DOI QR코드

DOI QR Code

3차원 함몰 지형에서 소멸파 성분의 영향

Effects of evanescent modes on three-dimensional depression of seabed

  • 정태화 (한밭대학교 토목공학과) ;
  • 김형준 (한양대학교 건설환경공학과) ;
  • 조용식 (한양대학교 건설환경공학과)
  • Jung, Tae-Hwa (Dept. of Civil Engineering, Hanbat National University) ;
  • Kim, Hyung-Joon (Dept. of Civil and Environmental Engineering, Hanyang University) ;
  • Cho, Yong-Sik (Dept. of Civil and Environmental Engineering, Hanyang University)
  • 발행 : 2009.12.31

초록

파랑의 문제에서 진행파 성분 이외에 Laplace 방정식의 또 다른 해인 소멸파 성분은 주로 수심이 급하게 변화할 때 파랑의 변형에 영향을 미친다. 본 연구에서는 고유함수전개법을 사용하여 3차원 함몰 지형에서 파랑의 변형에 대한 소멸파 성분의 영향을 검토하였다. 먼저, 구간의 수와 소멸파 성분의 수에 변화를 주면서 수렴성 검사를 하였으며 다음으로 소멸파 성분을 고려하면서 3차원 함몰지형에서의 파랑변형을 연구하였다.

Evanescent modes which are the other solutions of the Laplace equation for the linear dispersion equation may affect the wave transformation especially when a water depth varies abruptly. In this study, the effects of evanescent modes for a three-dimensional depression of seabed are investigated by using the eigenfunction expansion method. A convergence test is first carried out by changing numbers of domains and evanescent modes. The wave transformation for various depressions of seabed is then calculated under condition that the solution of the eigenfunction expansion method is converged.

키워드

참고문헌

  1. 강규영, 정태화, 조용식 (2007). “다양한 함몰지형 위를 통과하는 파랑의 반사율 해석.” 한국수자원학회, 제40권, pp. 899-908 https://doi.org/10.3741/JKWRA.2007.40.11.899
  2. 정재상, 강규영, 조용식 (2007). “다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석.” 한국해안해양공학회지, 제19권, pp. 29-37
  3. 조용식, 이창훈 (1998). “수심이 변하는 지형을 통과하는 파랑의 반사율과 통과율 산정.” 대한토목학회논문집, 제18권, pp. 351-358
  4. Bender, C.J. and Dean, R.G. (2003). “Wave transformation by two-dimensional bathymetric anomalies with sloped transitions.” Coastal Engineering, Vol. 50, pp. 61-84 https://doi.org/10.1016/j.coastaleng.2003.08.002
  5. Bender, C.J. and Dean, R.G. (2005). “Wave transformation by axisymmetric three-dimensional bathymetric anomalies with gradual transitions in depth.” Coastal Engineering, Vol. 53, pp. 331-351 https://doi.org/10.1016/j.coastaleng.2004.12.005
  6. Bremmer, H. (1951). “The W.K.B approximation as the first term of a geometrical optical series.” Communications on Pure and Applied Mathematics, Vol. 4, pp. 105-115 https://doi.org/10.1002/cpa.3160040111
  7. Chang, H.-K. and Liou, J.-C. (2007). “Long wave reflection from submerged trapezoidal breakwaters.” Ocean Engineering, Vol. 34, pp. 185-191 https://doi.org/10.1016/j.oceaneng.2005.11.017
  8. Cho, Y-S. and Lee, C. (2000). “Resonant reflection of waves over sinusoidally varying topographies.” Journal of Coastal Research, Vol. 16, pp. 870-879
  9. Dean, R.G. (1964). “Long wave modification by linear transitions.” Journal of Waterway and Harbors Division, ASCE, Vol. 1, No. 90, pp. 1-29
  10. Kirby, J. and Dalrymple, R.A. (1983). “Propagation on oblique incident water waves over a trench.” Journal of Fluid Mechanics, Vol. 133, pp. 47-63 https://doi.org/10.1017/S0022112083001780
  11. Lin, P. and Liu, H.-W. (2005). “ Analytical study of linear long-wave reflection by a two-dimensional obstacle of general trapezoidal shape.” Journal of Engineering Mechanics, Vol. 133, pp. 822-830
  12. Liu, P.L-F., Cho, Y.-S., Kostense, J.K. and Dingemans, M.W. (1992). “Propagation and trapping of obliquely incident wave gropus over a trench with current.” Applied Ocean Research, Vol. 14, pp. 201-212 https://doi.org/10.1016/0141-1187(92)90015-C
  13. Takano, K. (1960). “Effects d'un obstacle parallelepipedique sur propagation de la houle.” Houille Blanche, Vol. 15, pp. 247-267