References
- Burlew J.S. 1953. Algal Culture from Laboratory to Pilot Plant. Washington, DC, USA, Carnegie Institutiun of Washington Publication. 3-23 pp.
- Choi Y.E., Yun Y.S. and Park J.M. 2002. Evaluation of factors promoting astaxanthin production by a unicellular greenalga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18:1170-1175. https://doi.org/10.1021/bp025549b
- Geider R.J. and Osborne B.A. 1987. Light absorption by amarine diatom: experimental observation and theoreticalcal culations of the package effect in a small Thalassiosira species. Mar. Biol. 96:299-308. https://doi.org/10.1007/BF00427030
- Guerin M., Huntley M.E. and Olaizola M. 2003. Haematococcus astaxanthin: applications for human health and nutrition,Trends Biotechnol. 21: 210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
- Kim Z.-H., Kim S.-H., Lee H.-S. and Lee C.-G. 2006. Enhanced production of astaxanthin by flashig light using Haematococcus pluvialis. Enzyme Micob. Technol. 39:414-419. https://doi.org/10.1016/j.enzmictec.2005.11.041
- Kobayashi M., Kakizono T., Nishio N. and Nagai S. 1992. Effects of light intensity, light quality, and illuminationcycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74:61-63. https://doi.org/10.1016/0922-338X(92)90271-U
- Lababpour A., Hada K., Shimahara K., Katsuda T. and Katoh S. 2004. Effects of nutrient supply methods and illuminationwith blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis. J, Biosci. Bioeng. 98: 452-456. https://doi.org/10.1016/S1389-1723(05)00311-7
- Lee C.-G. 1999. Calculation of light penetration depth in photo-bioreactors. Biotechnol. Bioprocess, Eng. 4:78-81. https://doi.org/10.1007/BF02931920
- Lee C.-C. and Palsson B.O. 1994. High-density algal photobiore-actors using light-emitting diodes. Biotechnol. Bioeng. 44:1161-1167. https://doi.org/10.1002/bit.260441002
- Lorenz R.T. and Cysewski G.R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxan-thin. Trends Biotechnol. 18; 160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
- Myers J., Phillips Jr. J.N. and Graham J.-R. 1951. On the massculture of algae. Plant Physiol. 26: 539-548. https://doi.org/10.1104/pp.26.3.539
- Orosa M., Franqueira D., Cid A. and Abalde J. 2001. Carotenoid accumulation in Haematococcus pluvialis, in mixotrophic growth. Biotechnol. Lett. 23:373-378. https://doi.org/10.1023/A:1005624005229
- Park E.-K. and Lee C.-G. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotechnol. 11:1024-1030.
- Park K.-H. and Lee C.-G. 2000. Optimization of algal photo-bioreactors using flashing lights. Biotechnol. Bioprocess Eng. 5:186-190. https://doi.org/10.1007/BF02936592
- Steinbrenner J. and Linden H. 2003. Light inductiun of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol. Biol. 52:343-356. https://doi.org/10.1023/A:1023948929665
Cited by
- Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris vol.39, pp.5, 2016, https://doi.org/10.1007/s00449-016-1561-5
- Effect of Light Quality on Growth and Fatty Acid Production in Chlorella vugaris Using Light Emitting Diodes vol.8, pp.1, 2016, https://doi.org/10.15433/ksmb.2016.8.1.024
- Enhancing biomass and fatty acid productivity of Tetraselmis sp. in bubble column photobioreactors by modifying light quality using light filters vol.22, pp.4, 2017, https://doi.org/10.1007/s12257-017-0200-6
- Light wavelength distribution effects on the growth rate of Scenedesmus quadricauda vol.126, 2017, https://doi.org/10.1016/j.bej.2016.09.006