DOI QR코드

DOI QR Code

Westerly Winds in the Southern Ocean During the Last Glacial Maximum Simulated in CCM3

  • 발행 : 2009.12.30

초록

We investigated the response of the westerly winds over the Southern Ocean (SO) to glacial boundary conditions for the Last Glacial Maximum using the CCM3 atmospheric general circulation model. In response to glacial boundary conditions, the zonally averaged maximum SO westerly winds weakened 20-35% and were displaced toward the equator by 3-4 degrees. This weakening of the SO westerly winds arose from a substantial increase in mean sea level pressure (MSLP) in the southern part of the SO around Antarctica relative to the northern part. The increase in MSLP around Antarctica is associated with a marked temperature reduction caused by an increase in sea ice cover and ice albedo feedback during the glacial time. The weakened westerly winds in the SO and their equator-ward displacement might play a role in reducing the atmospheric $CO_2$ concentration by reducing upwelling of the carbon rich deep water during the glacial time.

키워드

참고문헌

  1. Anderson RF, Ali S, Bradtmiller LI, Nielsen SH, Fleisher MQ, Anderson BE, Burkle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in Atmospheric CO2. Science 323:1443-1448 https://doi.org/10.1126/science.1167441
  2. Anderson RF, Chase Z, Fleisher MQ, Sachs J (2002) The Southern Ocean's biological pump during the Last Glacial Maximum. Deep-Sea Res II 49:1909-1938 https://doi.org/10.1016/S0967-0645(02)00018-8
  3. Berger A (1978) Long-term variations of daily insolation and Quaternary climate changes. J Atmos Sci 35:2362-2367 https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
  4. Bonan G (1998) The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J Climate 11:1307-1326 https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  5. Boyle EA (1992) Cadmium and 13C paleochemical ocean distributions during the stage 2 glacial maximum. Annu Rev Earth Planet Sci 20:245-287 https://doi.org/10.1146/annurev.ea.20.050192.001333
  6. Broecker WS, Henderson GM (1998) The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography 13:352-364 https://doi.org/10.1029/98PA00920
  7. Clark PU, Mix AC, Bard E (2001) Ice sheets and sea level of the Last Glacial Maximum. EOS Transactions AGU 82(22):241-247 https://doi.org/10.1029/01EO00133
  8. CLIMAP (1976) The surface of the ice-age earth. Science 191:1131-1136 https://doi.org/10.1126/science.191.4232.1131
  9. CLIMAP (1981) Seasonal reconstructions of the earth's surface at the last glacial maximum. Geological Society of America, Map Chart Series 36
  10. Crosta X, Pichon J-J, Burckle LH (1998) Reappraisal of Antarctic seasonal sea-ice at the Last Glacial Maximum. Geophys Res Lett 25:2703-2706 https://doi.org/10.1029/98GL02012
  11. De Angelis M, Barkov NI, Petrov VN (1987) Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core. Nature 325:318-321 https://doi.org/10.1038/325318a0
  12. Francois R, Altabet MA, Yu E-F, Sigman DM, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of southern ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389:929-935 https://doi.org/10.1038/40073
  13. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys Res Lett 33. doi:10.1029/2005GL025332
  14. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Seasurface temperature and sea ice distribution of the southern ocean at the EPILOG Last Glacial Maximum - a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24:869-896 https://doi.org/10.1016/j.quascirev.2004.07.015
  15. Gildor H, Tziperman E, Toggweiler JR (2002) Sea ice switch mechanism and glacial-interglacial CO2 variations. Glob Biogeochem Cycle 16. doi:10.1029/2001GB001446
  16. Heusser CJ (1989) Southern westerlies during the last glacial maximum. Quat Res 31:423-425 https://doi.org/10.1016/0033-5894(89)90049-5
  17. Hurrell JW, van Loon H (1994) A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus 46A:325-338 https://doi.org/10.1034/j.1600-0870.1994.t01-1-00007.x
  18. Keeling RF, Visbeck M (2001) Antarctic stratification and glacial CO2. Nature 412:605-606 https://doi.org/10.1038/35088129
  19. Kiehl JT, Hack JJ, Bonan BG, Boville BA, Williamson DL, Rasch P (1998a) The national center for atmospheric research community climate model: CCM3. J Climate 11:1131-1149 https://doi.org/10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2
  20. Kiehl JT, Hack JJ, Hurrell J (1998b) The energy budget of the NCAR community climate model: CCM3. J Climate 11:1151-1178 https://doi.org/10.1175/1520-0442(1998)011<1151:TEBOTN>2.0.CO;2
  21. Kim S-J, Flato GM, Boer GJ (2003) A coupled climate model simulation of the last glacial maximum, Part 2: approach to equilibrium. Climate Dyn 20:635-661 https://doi.org/10.1007/s00382-002-0292-2
  22. Knox F, McElroy MB (1984) Changes in atmospheric CO2: influence of the marine biota at high latitude. J Geophys Res 89:4629-4637 https://doi.org/10.1029/JD089iD03p04629
  23. Kushner P, Held I, Delworth T (2001) Southern Hemisphere atmospheric circulation response to global warming. J Climate 14:2238-2249 https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2
  24. Markgraf V (1987) Paleoenvironmental changes at the northern limit of the subantarctic Nothofagus forest, Lat $37^{\circ}$S, Argentina. Quat Res 28:119-129 https://doi.org/10.1016/0033-5894(87)90037-8
  25. Markgraf V (1989) Southern westerlies during the last glacial maximum-reply. Quat Res 31:426-432 https://doi.org/10.1016/0033-5894(89)90050-1
  26. McCulloch RD, Bently MJ, Purves RS, Hulton NRJ, Sugden DE, Clapperton CM (2000) Climate inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. J Quat Science 15:409-417 https://doi.org/10.1002/1099-1417(200005)15:4<409::AID-JQS539>3.0.CO;2-#
  27. Moreno PI, Lowell TV, Jacobson Jr GL, Denton GH (1999) Abrupt vegetation and climate changes during the last glacial maximum and last termination in the Chilean Lake District: a case study from Canal de la Puntilla (41ºS). Geogr Ann Ser 81:285-311 https://doi.org/10.1111/j.0435-3676.1999.00059.x
  28. Peltier WR (1994) Ice age paleotopography. Science 265:195-201 https://doi.org/10.1126/science.265.5169.195
  29. Petit JR, Briat M, Royer A (1981) Ice age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293:391-394 https://doi.org/10.1038/293391a0
  30. Rojas M, Moreno P, Kageyama M, Crucifix M, Hewitt C, Abe-Ouchi A, Ohgaito R, Brady EC, Hope P (2008) The Southern Westerlies during the last glacial maximum in PMIP2 simulations. Climate Dyn 32(4). doi:10.1007/s00382-008-0421-7
  31. Sarmiento JL, Toggweiler R (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621-624 https://doi.org/10.1038/308621a0
  32. Siegenthaler U, Stocker T, Monnin E, Luthi D, Schwander J, Stauffer B, Raynaud D, Barnola J-M, Fischer H, Masson-Delmotte V, Jouzel J (2005) Stable carbon cycle-climate relationship during the late pleistocene. Science 310:1313-1317 https://doi.org/10.1126/science.1120130
  33. Siegenthaler U, Wenk T (1984) Rapid atmospheric CO2 variations and ocean circulation. Nature 308:624-626 https://doi.org/10.1038/308624a0
  34. Sigenthaler U, Monnin E, Kawamura K, Spahni R, Schwander J, Stauffer B, Stocker TF, Barnola J-M, Fischer H (2005) Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus 57B:51-57
  35. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859-869 https://doi.org/10.1038/35038000
  36. Sigman DM, Boyle EA (2001) Antarctic stratification and glacial CO2 -reply. Nature 412:606 https://doi.org/10.1038/35088132
  37. Stephens BB, Keeling RF (2000) The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 409:171-174 https://doi.org/10.1038/35051544
  38. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II: Trends. J Climate 13:1018-1036 https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2
  39. Toggweiler JR, Samuels B (1995) Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res 42:477-500 https://doi.org/10.1016/0967-0637(95)00012-U
  40. Toggweiler JR (1999) Variations of atmospheric CO2 by ventilation of the earth's deepest water. Paleoceanography 14:571-588 https://doi.org/10.1029/1999PA900033
  41. Toggweiler JR (2009) Shifting westerlies. Science 323: 1434-1435. doi:10.1126/science.1169823
  42. Toggweiler JR, Russell JL, Carson SR (2006) Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21. doi:10.1029/2005PA001154
  43. Yin JH (2005) A consistent poleward shift of the storm tracks in the simulations of 21st century climate. Geophys Res Lett 32. doi:10.1029/2005GL023684

피인용 문헌

  1. Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: Sensitivity studies on plausible causes vol.115, pp.D24, 2010, https://doi.org/10.1029/2010JD014791
  2. Sensitivity of southern hemisphere westerly wind to boundary conditions for the last glacial maximum 2017, https://doi.org/10.1016/j.quaint.2017.04.001
  3. The Southern Annular Mode (SAM) in PMIP2 simulations of the last glacial maximum vol.31, pp.4, 2014, https://doi.org/10.1007/s00376-013-3179-8