DOI QR코드

DOI QR Code

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity

스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가

  • Lim, Hyung-Mi (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Tae-Il (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae-Sung (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sang-Yup (Department of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Kang, Dong-Pil (Nanohybrid & Energy Materials Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Seung-Ho (Eco Composite Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 임형미 (한국세라믹기술원 에코복합소재센터) ;
  • 권태일 (한국세라믹기술원 에코복합소재센터) ;
  • 김대성 (한국세라믹기술원 에코복합소재센터) ;
  • 이상엽 (연세대학교 화학생명공학과) ;
  • 강동필 (한국전기연구원 나노융합에너지소재연구센터) ;
  • 이승호 (한국세라믹기술원 에코복합소재센터)
  • Published : 2009.12.27

Abstract

Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

Keywords

References

  1. R. Siefel and J. Howell, Chapter 5 in Thermal Radiation Heat Transfer, p.122, McGraw-Hill Book Company, USA (1992)
  2. S. -C. Bae and G.-S. Oh, Transactions of KSME A(in Korean), 27(6), 789 (2003)
  3. G. -S. Oh and S.-C. Bae, Transactions of KSME A(in Korean), 21(7), 65 (2003)
  4. J. Mohelnikova, Construction and Building Materials, 23(5), 1993 (2009) https://doi.org/10.1016/j.conbuildmat.2008.08.033
  5. E. T. Johnson, Low e glazing design guide, p.28, Butterworth Archtecture, Boston (1991)
  6. L. S. Roman, R. Valaski, C. D. Canrstraro, E. C. S. Magalhaes, C. Persson, R. Ahuja, E. F. da Silva Jr., I. Pepe and A. da Silva, Appl. Surf Sci., 252(15), 5361 (2006) https://doi.org/10.1016/j.apsusc.2005.12.040
  7. D. -P. Kang, H.-Y. Park, M.-S. Ahn, I.-H. Myung, T.-J. Lee, J.-H. Choi and H.-J. Kim, Polymer(in Korean), 29(3), 242 (2005)
  8. M. Simes, O. B. G. Assis and L. A. Avaca, J. Non Cryst. Solids 273(1-3), 159 (2000) https://doi.org/10.1016/S0022-3093(00)00161-7
  9. Y. Casatro, B. Ferrari, R. Moreno, A. Duran, Surf. Coat. Technol., 191(2-3), 228 (2005) https://doi.org/10.1016/j.surfcoat.2004.03.001
  10. H. Yun, J. Li, H.-B. Chen and C.-J. Lin, Electrochim. Acta, 52, 6679 (2007) https://doi.org/10.1016/j.electacta.2007.04.078
  11. J. H. Yu, S. H. Jung, B. R. Jo, G. P. Hong, J. S. Mun, J. B. Kang, Kor. J. Mater. Res., 18(8), 417 (2008) https://doi.org/10.3740/MRSK.2008.18.8.417

Cited by

  1. Measurement of the Surface Emissivity of the LED Lighting Module vol.26, pp.6, 2013, https://doi.org/10.4313/JKEM.2013.26.6.493