DOI QR코드

DOI QR Code

Protective effect of Asystasia gangetica reduced oxidative damage in the small intestine of streptozotocin-induced diabetic rats

  • Kumar, K. Asok (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences) ;
  • Umamaheswari, M. (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences) ;
  • Sivashanmugam, A.T. (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences) ;
  • Subhadradevi, V. (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences) ;
  • Somanathan, S.S. (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences) ;
  • Ravi, T.K. (Department of Pharmacology, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences)
  • Published : 2009.12.31

Abstract

Oxidative stress plays an important role in the pathogenesis of various diabetic complications and small intestine is vulnerable to damage resulting in morphological and functional changes. In this study, the effects of Asystasia gangetica leaf extract (AGLE) on oxidative stress status in small intestine of diabetic rats were examined. The leaves of Asystasia gangetica was extracted with 70% ethanol. Oral administration of AGLE once daily (100 mg/kg and 200 mg/kg b.w.) for 28 days to diabetic rats significantly (P < 0.05) increased antioxidant levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione, GSSH, carbohydrate metabolizing enzyme, glucose-6-phosphate dehydrogenase. The increased levels of protein carbonyl content, lipid peroxidation and xanthine oxidase/xanthine dehydrogenase in diabetic rats were reverted back to near normal levels on treatment with AGLE. Both doses of AGLE offered significant activity (P < 0.01) against oxidative damage and were comparable with standard, glibenclamide. The results revealed the occurrence of oxidative stress in small intestine during diabetes and suggest the potential of AGLE as an antioxidant in protecting the tissue defense system against oxidative damage in streptozotocin-induced diabetes.

Keywords

References

  1. Aebi H. (1984) Catalase in vitro. Method. Enzymol. 105, 121-126 https://doi.org/10.1016/S0076-6879(84)05016-3
  2. Akah PA, Ezike AC, Nwafor SV, Okoli CO, Enwerem NM. (2003) Evaluation of the anti-asthmatic property of Asystasia gangetica leaf extracts. J. Ethnopharmacol. 89, 25-36 https://doi.org/10.1016/S0378-8741(03)00227-7
  3. Bhor VM, Raghuram N, Sivakami S. (2004) Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int. J. Biochem. Cell Biol. 36, 89-97 https://doi.org/10.1016/S1357-2725(03)00142-0
  4. Elder C. (2004) Ayurveda for diabetes mellitus: a review of the biomedical literature. Altern. Ther. Health Med. 10, 44-50
  5. Ezike AC, Akah PA, Okoli CO. (2008) Bronchospasmolytic activity of the extract and fractions of Asystasia gangetica leaves. Int. J. Appl. Res. Nat. Prod. 1, 8-12
  6. Fraga CG, Leibovitz BE, Tappel AL. (1988) Lipid peroxidation measured as TBARS in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic. Biol. Med. 4, 155-161 https://doi.org/10.1016/0891-5849(88)90023-8
  7. Gutteridge JMC. (1995) Lipid peroxidation and antioxidant as biomarkers of tissue damage. Clin. Chem. 41, 1819-1828
  8. Halliwell B, Zhao K, Whiteman M. (2000) The gastrointestinal tract: a major site of antioxidant action? Free Radic. Res. 33, 819-830 https://doi.org/10.1080/10715760000301341
  9. Jang YY, Song JH, Shin YK, Han ES, Lee CS. (2000) Protective effect of boldine on oxidative mitochondrial damage in STZ-induced diabetic rats. Pharmacol. Res. 42, 361-371 https://doi.org/10.1006/phrs.2000.0705
  10. Kakkar P, Das B, Viswanathan PN. (1984) A modified spectrophotometric assay of SOD. Indian J. Biochem. Biophys. 2, 130-132
  11. Kanchanapoom T, Ruchirawat S. (2007) Megastigmane glucoside from Asystasia gangetica (L.) T. Anderson. J. Nat. Med. 61, 430-433 https://doi.org/10.1007/s11418-007-0158-3
  12. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska T (2000) Lipid peroxidation and scavenging enzyme activity in streptozotocin induced diabetes. Acta diabetol. 37, 179-183 https://doi.org/10.1007/s005920070002
  13. Kiritikar KR, Basu BD. (1988) Indian Medicinal Plants. Vol. 3, pp. 1891-1892, Jeyyed Press., New Delhi
  14. Konishi H, Tanaka M, Takemura Y, Matsuzaki H, Ono Y, Kikkawa U, Nishizuka Y. (1997) Activation of protein kinase C by tyrosine phosphorylation in response to $H_{2}O_{2}$. Proc. Natl. Acad. Sci. U.S.A. 94, 11233-11237 https://doi.org/10.1073/pnas.94.21.11233
  15. Koya D, Haneda M, Kikkawa R, King GL. (1998) α Tocopherol treatment prevents glomerular dysfunctions in diabetic rats through inhibition of protein kinase C diacylglycerol pathway. Biofactors 7, 69-76 https://doi.org/10.1002/biof.5520070110
  16. Krief S, Hladik CM, Haxaire C. (2005) Ethnomedicinal and bioactive properties of plants ingested by wild chimpanzees in Uganda. J. Ethnopharmacol. 101, 1-15 https://doi.org/10.1016/j.jep.2005.03.024
  17. Kyselova Z, Gaidosik A, Gajdosikova A, Ulicna O, Minalova D, Karasu C, Stetek M. (2005) Effect of pyridoindole antioxidant stobadine on development of experimental diabetic cataract and on lens protein oxidation in rats: comparison with vitamin E and BHT. Mol. Vis. 11, 56-65
  18. Loven D, Schedl H, Wilson H, Diekus M. (1986) Effect of insulin and oral glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin induced diabetes. Diabetes 35, 503-507 https://doi.org/10.2337/diabetes.35.5.503
  19. Lowry OH, Rosenbourgh NJ, Farr AL, Randall RJ. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265-275
  20. Paglia DE, Valentine WN. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxides. J. Lab. Clin. Med. 70, 158-159
  21. Pavana P, Sethupathy S, Manoharan S. (2007) Antihyperglycemic and antilipidperoxidative effects of Tephrosia purpurea seed extract in streptozotocin induced diabetic rats. Indian J. Clin. Biochem. 22, 77-83 https://doi.org/10.1007/BF02912886
  22. Racker E. (1955) Glutathione reductase from bakers' yeast and beef liver. J. Biol. Chem. 217, 855-866
  23. Sener G, Sehirli AO, Gedik N, Dulger G. (2007) Rosiglitazone, a PPAR-γ ligand, protects against burn-induced oxidative injury of remote organs. Burns 33, 587-593 https://doi.org/10.1016/j.burns.2006.10.381
  24. Senthilkumar M, Gurumoorthi P, Janardhanan K. (2006) Some medicinal plants used by Irular, the tribal people of Marudhamalai hills, Coimbatore, Tamil Nadu. Nat. Prod. Rad. 5, 382-388
  25. Sharma SD, Sivakami S. (1998) Responses of intestinal and renal alpha glycosidases to alloxan and streptozotocin-induced diabetes: a comparative study. Biochem. Mol. Biol. Int. 44, 647-656 https://doi.org/10.1080/15216549800201692
  26. Shirpoor A, Ilkhanizadeh B, Saadatian R, Darvari BS, Behtaj F, Karmipour M, Ghaderi-Pakdel F, Saboori E. (2006) Effect of vitamin E on diabetes-induced changes in small intestine and plasma antioxidant capacity in rat. J. Physiol. Biochem. 62, 171-177 https://doi.org/10.1007/BF03168466
  27. Sozmen Y, Sozmen B, Delen Y, Onat T. (2001) Catalase/superoxide dismutase (SOD) and catalase/paraoxonase (PON) ratios may implicate poor glycemic control. Arch. Med. Res. 32, 283-287 https://doi.org/10.1016/S0188-4409(01)00285-5
  28. Stadtman ER. (1992) Protein oxidation and aging. Science 257, 1220-1224 https://doi.org/10.1126/science.1355616
  29. Subramoniam A, Madhavachandran V, Rajasekaran S, Pushpangadam. (1997) Aphrodisiac property of Trichopus zeylanicus extract in male mice. J. Ethnopharmacol. 57, 21-27 https://doi.org/10.1016/S0378-8741(97)00040-8
  30. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M, Reiter RJ, Zavodnik IB. (2007) Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur. J. Parmacol. 569, 180-187 https://doi.org/10.1016/j.ejphar.2007.05.018
  31. Szkudelski T. (2001) The mechanism of alloxan and streptozotocin action in â-cells of the rat pancreas. Physiol. Res. 50, 536-546
  32. Torrico F, Cepeda M, Guerrero G, Melendez F, Blanco Z, Canelon DJ, Diaz B, Compagnone RS, Suarez AI. (2007) Hypoglycemic effect of Croton cuneatus in streptozotocin-induced diabetic rats. Rev. Bras. Farmacogn. 17, 166-169 https://doi.org/10.1590/S0102-695X2007000200005
  33. Trease GE, Evans MC. (2002) Pharmacognosy. pp. 343-382, Saunders (W.B.) Co Ltd, Edinburgh.
  34. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telsor J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44-84 https://doi.org/10.1016/j.biocel.2006.07.001
  35. Wang Y, Zhu JX, Kong LD, Yang C, Cheng CH, Zhang X. (2004) Administration of procyanidins from grape seeds reduces serum uric acid levels and decreases hepatic xanthine dehydrogenase/oxidase activities in oxonate-treated mice. Basic Clin. Pharmacol. Toxicol. 94, 232-237 https://doi.org/10.1111/j.1742-7843.2004.pto940506.x
  36. Yan H, Harding JJ. (1997) Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem. J. 328, 599-605 https://doi.org/10.1042/bj3280599
  37. Yasuda K, Kizu H, Yamashita T, Kameda Y, Kato A, Nash RJ, Fleet GW, Molyneux, RJ, Asano N. (2002) New sugar-mimic alkaloids from pods of Angylocalyx pynaertil. J. Nat. Prod. 65, 198-202 https://doi.org/10.1021/np010360f
  38. Yeoh HH, Wong PFM. (1993) Food value of lesser utilized tropical plants. Food Chem. 46, 239-241 https://doi.org/10.1016/0308-8146(93)90113-T
  39. Zhao J, Sha H, Zhou S, Tong X, Zhuang FY, Gregerson H. (2002) Remodelling of zero-stress state of small intestine in streptozotocin-induced diabetic rats. Effect of gliclazide. Dig. Liver Dis. 34, 707-716 https://doi.org/10.1016/S1590-8658(02)80022-6

Cited by

  1. In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves vol.13, pp.4, 2013, https://doi.org/10.1007/s13596-013-0118-2