DOI QR코드

DOI QR Code

Exchange Bias in Cr2O3/Fe3O4 Core/Shell Nanoparticles

  • Yun, B.K. (Department of Physics, Inha University) ;
  • Koo, Y.S. (Department of Physics, Inha University) ;
  • Jung, J.H. (Department of Physics, Inha University)
  • Published : 2009.12.31

Abstract

We report the exchange bias in antiferromagnet/ferrimagnet $Cr_2O_3/Fe_3O_4$ core/shell nanoparticles. The magnetic field hysteresis curve for $Cr_2O_3/Fe_3O_4$ nanoparticles after field-cooling (FC) clearly showed both horizontal ($H_{EB}{\sim}$610 Oe) and vertical (${\Delta}M{\sim}$5.6 emu/g) shifts at 5 K. These shifts disappeared as the temperature increased toward the Neel temperature of $Cr_2O_3\;(T_N{\sim}$307 K). The $H_{EB}\;and\;{\Delta}M$ values were sharply decreased between the $1^{st}\;and\;the\;2^{nd}$ magnetic field cycles, and then slowly decreased with further cycling. These results are discussed in terms of the formation of single domains with pinned, uncompensated, antiferromagnetic spin and their evolution into multi-domains with cycling.

Keywords

References

  1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956) https://doi.org/10.1103/PhysRev.102.1413
  2. For review, J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, Phys. Rep. 422, 65 (2005) https://doi.org/10.1016/j.physrep.2005.08.004
  3. R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994) https://doi.org/10.1063/1.356888
  4. K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Phys. Rev. Lett. 79, 1130 (1997) https://doi.org/10.1103/PhysRevLett.79.1130
  5. N. J. Gokemeijer, R. L. Penn, D. R. Veblen, and C. L. Chien, Phys. Rev. B 63, 174422 (2001) https://doi.org/10.1103/PhysRevB.63.174422
  6. K.-Y. Kim, S.-C. Shin, Y.-S. Hwang, Y. Jo, S. Angappane, and J.-G. Park, J. Korean Phys. Soc. 54, 175 (2009) https://doi.org/10.3938/jkps.54.175
  7. K.-Y. Kim, H.-C. Choi, C.-Y. You, and J.-S. Lee, J. Magnetics 13, 97 (2008) https://doi.org/10.4283/JMAG.2008.13.3.097
  8. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogues, Nature (London) 423, 850 (2003) https://doi.org/10.1038/nature01687
  9. X. H. Liu, W. B. Cui, X. K. Lv, W. Liu, X. G. Zhao, D. Li, and Z. D. Zhang, J. Phys. D: Appl. Phys. 41, 105005 (2008) https://doi.org/10.1088/0022-3727/41/10/105005
  10. Z. M. Tian, S. L. Yuan, L. Liu, S. Y. Yin, L. C. Jia, P. Li, S. X. Huo, and J. Q. Li, J. Phys. D: Appl. Phys. 42, 035008 (2009) https://doi.org/10.1088/0022-3727/42/3/035008
  11. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998) https://doi.org/10.1103/RevModPhys.70.1039
  12. E. V. Ramana, O-U. Kwon, J. I. Kim, and C. U. Jung, J. Magnetics 14, 117 (2008) https://doi.org/10.4283/JMAG.2009.14.3.117
  13. Y. S. Koo, K. M. Song, N. Hur, J. H. Jung, T-H. Jang, H. J. Lee, T. Y. Koo, Y. H. Jeong, J. H. Cho, and Y. H. Jo, Appl. Phys. Lett. 94, 032903 (2009) https://doi.org/10.1063/1.3073751
  14. F. Radu, M. Etzkorn, T. Schmitte, R. Siebrecht, A. Schreyer, K. Westerholt, and H. Zabel, J. Magn. Magn. Mater. 240, 251 (2002) https://doi.org/10.1016/S0304-8853(01)00815-0
  15. R. K. Zheng, H. Liu, Y. Wang, and X. X. Zhang, Appl. Phys. Lett. 84, 702 (2004) https://doi.org/10.1063/1.1644919
  16. Y. Ijiri, T. C. Schulthess, J. A. Borchers, P. J. van der Zaag, and R. W. Erwin, Phys. Rev. Lett. 99, 147201 (2007) https://doi.org/10.1103/PhysRevLett.99.147201

Cited by

  1. Size-Dependent Passivation Shell and Magnetic Properties in Antiferromagnetic/Ferrimagnetic Core/Shell MnO Nanoparticles vol.132, pp.27, 2010, https://doi.org/10.1021/ja1021798
  2. Enhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles vol.5, pp.1, 2015, https://doi.org/10.1038/srep09609