DOI QR코드

DOI QR Code

Evaluations of the Maximum Shear Reinforcement of Reinforced Concrete Beams

철근콘크리트 보의 최대 전단철근비에 대한 평가

  • Hwang, Hyun-Bok (Dept. of Architectural Engineering, Sungkyunkwan University) ;
  • Moon, Cho-Hwa (Dept. of Architectural Engineering, Sungkyunkwan University) ;
  • Lee, Jung-Yoon (Dept. of Architectural Engineering, Sungkyunkwan University)
  • 황현복 (성균관대학교 건축공학과) ;
  • 문초화 (성균관대학교 건축공학과) ;
  • 이정윤 (성균관대학교 건축공학과)
  • Published : 2009.12.31

Abstract

The requirements of the maximum shear reinforcement in the EC2-02 and CSA-04, which are developed based on the truss model, are quite different to those in the ACI-08 code and AIJ-99 code, which are empirical equations. The ACI 318-08, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take the influence of the concrete compressive strength into account. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-08. Ten RC beams having various shear reinforcement ratios were tested and their corresponding shear stress-shear strain curves and failure modes were compared to the predicted ones obtained by the current design codes.

변환각트러스모델에 근거한 EC2-02 기준식이나 CSA-04 기준식의 최대 전단보강철근비는 반경험적 방법에 근거한 ACI 318-08 기준식이나 AIJ-99 기준식에서 요구하는 최대 전단보강철근비와 많은 차이가 있다. ACI 318-08 기준식, CSA-04 기준식 및 EC2-02 기준식은 콘크리트의 압축강도에 따라서 최대 전단보강철근비가 증가하지만 AIJ-99 기준식은 일정한 값이 적용된다. 고강도콘크리트에 대하여 EC2-02 기준식이나 CSA-04 기준식이 요구하는 최대 전단보강철근비는 ACI 318-08 기준식이 요구하는 최대 철근비에 비하여 매우 크다. 이 연구에서는 10개의 철근콘크리트 보 실험을 통하여 전단보강철근의 양과 콘크리트의 압축강도가 최대 전단보강철근비에 미치는 영향을 파악하였다. 실험에 의하면 ACI 318-08 기준식이나 AIJ-99 기준식에서 요구하는 최대 전단보강철근비보다 최대 약 1.9배까지 전단보강철근을 많이 배근하였음에도 불구하고 실험 결과는 전단보강철근이 항복한 이후에 부재가 최대 내력에 도달하였다.

Keywords

References

  1. 한국콘크리트학회, 콘크리트구조설계기준, 한국콘크리트학회, 2007, 328 pp
  2. Nielsen, M. P., Limit Analysis and Concrete Plasticity, CRC Press, 1999, 908 pp
  3. Yoon, Y. S., Cook, W. D., and Mitchell, D., “Minimum Shear Reinforcement in Nominal, Medium, and High-Strength Concrete Beams,” ACI Structural Journal, Vol. 93, No. 5, 1996, pp. 576-584
  4. Johnson, M. K. and Ramirez, J. A., “Minimum Shear Reinforcement in Beams with High Strength Concrete,” ACI Structural Journal, Vol. 86, No. 4, 1989, pp. 376-382
  5. Roller, J. J. and Russell, H. G., “Shear Strength of High- Strength Concrete Beams with Web Reinforcement,” ACI Structural Journal, Vol. 87, No. 2, 1990, pp. 191-198
  6. Lee, J. Y. and Kim, U. Y., “Effect of Longitudinal Tensile Reinforcement Ratio and Shear Span-to-Depth Ratio on Minimum Shear Reinforcement in Beams,” ACI Structural Journal, Vol. 105, No. 2, 2008, pp. 134-144
  7. ACI Committee 318-08, “Building Code Requirements for Reinforced Concrete and Commentary (ACT 318-08/ACI 318R-08),” American Concrete Institute, Detroit, 2008 , 465 pp
  8. Comete European de Normalisation (CEN), “Eurocode 2: Design of Concrete Structures. Part 1-General Rules and Rules for Buildings,” prEN 1992-1, 2002, 211 pp
  9. CSA Committee A23.3-04, “Design of Concrete Structures for Buildings CAV3-A23.3-04,” Canadian Standards Association, Canada, 2004, 232 pp
  10. Architectural Institute of Japan, Standard for Structural Calculation of Reinforced Concrete Structures, Architectural Institute of Japan, 1999, 412 pp
  11. Collins, M. P. and Mitchell, D., Prestressed Concrete Structures, Prentice Hall, Englewood Cliffs, 1991, 766 pp
  12. Lee, J. Y. and Hwang, H. B., “Maximum Shear Reinforcement of Reinforced Concrete Beams,” ACI Structural Journal (submitted)

Cited by

  1. Maximum Shear Strength of Slender RC Beams with Rectangular Cross Sections vol.141, pp.7, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001156