DOI QR코드

DOI QR Code

Improved Biaxial Flexure Test (BFT) for Concrete with the Optimum Specimen Geometry

최적 시험체 형상을 고려한 개선된 콘크리트 등방휨인장강도 시험법

  • Zi, Gooang-Seup (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Ji-Hwan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Oh, Hong-Seob (Dept. of Civil Engineering, Jinju National University)
  • 지광습 (고려대학교 건축사회환경공학부) ;
  • 김지환 (고려대학교 건축사회환경공학부) ;
  • 오홍섭 (진주산업대학교 토목공학과)
  • Published : 2009.08.31

Abstract

For designing concrete structures, engineers are provided data from unidirectional flexure test in most cases. But real structural components such as pavements and deck panel are subjected to multiaxial stress throughout their body. Therefore, biaxial flexure test for concrete may be considered as a gage of the performance of concrete in service. In this paper, we propose the optimum biaixial flexture test (BFT) to measure the biaxial flexural strength of concrete. This method are an improved version of the ring-on-ring test which have been used extensively in the fields of ceramics and biomaterials. The optimum geometry of the test specimen was determined by using a three-dimensional finite element analysis. A series of test data obtained from the proposed test method is provided to show that the proposed optimum biaxial flexure test method can be used to identify the biaxial tensile strength of concrete.

콘크리트를 설계하기 위해 설계자는 설계의 효율성을 위하여 일축휨강도에 기초한 설계를 하고 있지만, 포 장체 및 바닥판과 같은 실제 구조요소의 응력상태는 재료전반에 작용하는 이축응력이 발생하게 된다. 따라서 콘크리트 의 이축휨시험은 사용하중상태에서 콘크리트의 거동을 평가할 수 있는 중요한 설계인자로서 사용될 수 있다. 이 연구 에서 저자들은 콘크리트 이축휨강도를 평가할 수 있는 BFT 시험법의 최적 구성을 제안하였다. 이 기법은 세라믹 또는 바이오 재료 분야에서 사용되어온 링온링 시험법을 콘크리트 재료에 적합하도록 수정, 제시한 것이다. 이를 위하여 유 한요소해석과 정밀해에 대한 분석을 통하여 시험체의 형상과 시험법을 제시하였다. 제안된 방법에 의한 실험 결과, 이 축휨실험을 통하여 콘크리트 재료의 휨강도를 충분히 판정할 수 있는 것을 증명할 수 있었다.

Keywords

References

  1. Munz, D. and Fett, T., “Ceramics, Mechanical Properties, Failure Behaviour,” Materials Selection, Springer, Berlin, 1999, 293 pp
  2. Giovan, M. N. and Sines, G., “Strength of a Ceramic at High Temperatures under Biaxial and Uniaxial Tension,” Journal of American Ceramic Society, Vol. 64, 1981, pp. 68-73 https://doi.org/10.1111/j.1151-2916.1981.tb09578.x
  3. Fessler, H. and Fricker, D. C., “A Theoretical Analysis of the Ring-on-Ring Loading Disc Test,” Journal of American Ceramic Society, Vol. 67, 1984, pp. 582-588 https://doi.org/10.1111/j.1151-2916.1984.tb19598.x
  4. Solt´esz, U., Richter, H. and Kienzler, R., “The Concentric-Ring-Test and Its Application for Determining the Surface Strength of Ceramics, in High Tech Ceramics,” Elsevier Science Publishers, 1987, pp. 149-158
  5. Marshall, D. B., “An Improved Biaxial Flexure Test for Ceramics,” Ceramic Bulletin, Vol. 59, 1980, pp. 551-553
  6. Shetty, K. D., Rosenfield, A. R., McGuire, P., and Duckworth, W. H., “Biaxial Flexure Test for Ceramics,” American Ceramic Society Bulletin, Vol. 59, 1980, pp. 1193-1197
  7. Shetty, K. D., Rosenfield, A. R., McGuire, P., Bansal, G. K., and Duckworth, W. H., “Biaxial Fracture Studies of a Glass Ceramic,” Journal of American Ceramic Society, Vol. 64, 1981, pp. 1~4 https://doi.org/10.1111/j.1151-2916.1981.tb09548.x
  8. Bhamra, G., Palin, W. M., and Fleming, G. J. P., “The Effect of Surface Roughness on the Flexure Strength of an Alumina Reinforced All-Ceramic Crown Material,” Journal of Dentistry, Vol. 30, 2002, pp. 153-160 https://doi.org/10.1016/S0300-5712(02)00012-X
  9. Saraf, M. N., Cupta, R. K., and Vishwanath, “Biaxial Flexural Strength and Estimation of Size on the Strength Properties of FRP Composites,” Defence Science Journal, Vol. 40, No. 2, 1990, pp. 171-181 https://doi.org/10.14429/dsj.40.4458
  10. Hsueh, C. H. and Kelly, J. R., “Simple Solutions of Multilayered Discs Subjected to Biaxial Moment Loading,” Dental Materials, Vol. 25, 2009, pp. 506-513 https://doi.org/10.1016/j.dental.2008.10.002
  11. Higgs, W. A. J., Lucksanasombool, P., Higgs, R. J. E. D., and Swain, M. V., “Evaluating Acrylic and Glass-Ionomer Cement Strength Using the Biaxial Flexure Test,” Biometerials, Vol. 22, 2001, pp. 1583-1590 https://doi.org/10.1016/S0142-9612(00)00324-0
  12. Kanchanavasita, W., Anstice, H. M., and Pearson, G. J., “Long-Term Flexural Strengths of Resin-Modified Glass-Ionomer Cements,” Biometerials, Vol. 19, 1998, pp. 1703-1713 https://doi.org/10.1016/S0142-9612(98)00079-9
  13. Morrel R, McCormick, N. J., Bevan, J., Lodeiro, M., and Margetson, “Biaxial Disc Flexure-Modulus and Strength Testing,” British Ceramic Transactions, Vol. 98, No. 5, 1999, pp. 234-240 https://doi.org/10.1179/096797899680507
  14. Hsueh, C. H. and Luttrell, “Recent Advances in Modelling Stress Distributions in Multilayers Subjected to Biaxial Flexure Tests,” Composites Science and Technology, Vol. 67, 2007, pp. 278-285 https://doi.org/10.1016/j.compscitech.2006.08.003
  15. 오홍섭, 지광습, “일축 및 이축 휨인장강도의 실험적 비교,” 콘크리트학회 논문집, 20권, 2호, 2008, pp. 139-146 https://doi.org/10.4334/JKCI.2008.20.2.139
  16. Zi, G. and Oh, H. “A Novel Indirect Tensile Test Method to Measure the Biaxial Tensile Strength of Concretes and Other Quasibrittle Materials,” Cement and Concrete Research, Vol. 38, No. 6, 2007, pp. 751-756
  17. 지광습, 오홍섭, 최진혁, “콘크리트의 순수 등방성 휨인장강도 시험법,” 대한토목학회 논문집, 27권, 5A호, 2007, pp. 753-758
  18. 한국콘크리트학회, “콘크리트구조설계기준” 한국콘크리트학회, 2008, 520 pp

Cited by

  1. An Experimental Study on the Flexural Behavior of the Round Concrete Panels according to the Evaluation Method of Biaxial Flexural Tensile Strengths vol.23, pp.4, 2011, https://doi.org/10.4334/JKCI.2011.23.4.479