DOI QR코드

DOI QR Code

Antiobese Effects of Diet Containing Medicinal Plant Water Extracts in High Fat Diet-Induced Obese Mice

약용식물 물 추출물들 혼합식이에 의한 고지방식이로 유도된 마우스의 비만 억제효과

  • Seo, Dong-Joo (Dept. of Plant Biotechnology, Division of Biotechnology, School of Bioscience and Biotechnology) ;
  • Chung, Mi-Ja (The Nutraceutical Bio Brain Korea 21 Project Group, Kangwon National University) ;
  • Kim, Dae-Jung (Dept. of Plant Biotechnology, Division of Biotechnology, School of Bioscience and Biotechnology) ;
  • Choe, Myeon (Dept. of Plant Biotechnology, Division of Biotechnology, School of Bioscience and Biotechnology)
  • 서동주 (강원대학교 식물생명공학전공) ;
  • 정미자 (강원대학교 BK21사업단(뉴트라슈티컬바이오)) ;
  • 김대중 (강원대학교 식물생명공학전공) ;
  • 최면 (강원대학교 식물생명공학전공)
  • Published : 2009.11.30

Abstract

We investigated the effects of feeding diet containing medicinal plant water extracts (MPWEs) on body weight, epididymal adipose tissue weight, adipocyte size of epididymal adipose tissue and plasma lipid levels in high fat (HF) diet-induced obese mice. To test antiobese effects of diet containing the MPWEs, C57BL/6J mice were fed with HF diet for 11 weeks. In the last 6 weeks, the HF diet was supplemented with 0 (HFD) or MPWEs (5 g/kg, HFD+MPWEs) or orlistat [0.5 g/kg, HFD+orlistat (antiobesity drug)]. The HF-free diet group was fed normal chow for 11 weeks. Eleven-weeks feeding with HFD resulted in significant increase in lipid levels, body weight, liver and epididymal adipose tissue weights, compared with the HF-free group. Diet containing MPWEs significantly reduced plasma total cholesterol, LDL-cholesterol, triglyceride and glucose concentrations as well as body weight, liver weight and epididymal adipose tissue weight. Plasma triglyceride levels were significantly lower in the HFD+Forlistat group after 6 weeks and a similar effect was found with HFD+MPWEs group. The adipocyte size of epididymal adipose tissue in HFD group was significantly larger than those of HF-free group. MPWEs and orlistat (positive control) significantly decreased the size of epididymal adipocytes but orlistat was slightly more effective than MPWEs. These results suggest that oral feeding of the MPWEs may have antiobesity effects by suppressing body weight gain, adipose tissue formation and adipocyte size increase.

우리는 고지방식이에 의해 유도된 비만 마우스의 몸무게, 부고환 지방조직 무게, 부고환 지방조직의 지방세포 크기 및 혈장 지질 농도에 약용식물 물 추출물들(MPWEs) 혼합식이가 어떤 영향들을 미치는지 연구하였다. MPWEs 혼합식이의 항비만 효과를 알아보기 위하여 C57BL/6J 마우스는 11주 동안 고지방식이를 섭취시켰다. 마지막 6주 동안, 계속해서 고지방식이(HFD)만 섭취시키거나 고지방식이에 MPWEs(5 g/kg, HFD+MPWEs)이나 고지방식이에 orlistat[0.5 g/kg, HFD+orlistat(항비만 약)]을 섞어 섭취시켰다. HF-free군은 11주 동안 일반 식이를 섭취시켰다. 11주간 고지방식이를 섭취한 군은 일반식이군과 비교하여 혈장 지질 수준, 몸무게, 간 무게 및 부고환 지방조직 무게가 현저하게 증가하였다. MPWEs를 함유하고 있는 식이는 몸무게, 간 무게 및 부고환 지방조직 무게와 마찬가지로 혈장 총콜레스테롤, LDL 콜레스테롤, 중성지방 그리고 혈당 농도를 현저하게 감소시켰다. 혈장 중성지방 수준은 6주 동안 orlistat를 함유한 고지방식이군(HFD+orlistat)에서 현저히 낮았고 MPWEs를 함유한 고지방식이군(HFD+MPWEs)의 그것과 유사하였다. 고지방식이군 마우스의 지방세포크기가 일반식이군의 그것에 비해 현저하게 증가하였고, MPWEs와 orlistat(positive control)는 부고환 지방세포 크기를 현저하게 감소시켰으나 orlistat가 MPWEs보다 약간 더 영향력이 있었다. 이들 결과들은 MPWEs 섭취는 몸무게 증가, 지방세포 형성 및 지방세포 크기 증가를 저해함으로써 항비만 효과가 있을 것이라는 것을 시사하고 있다.

Keywords

References

  1. Grundy S.M. 1998. Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr 67: 563S-572S https://doi.org/10.1093/ajcn/67.3.563S
  2. Albu J, Allison D, Boozer C.N, Heymsfield S, Kissileff H, Kretser A, Krumhar K, Leibei R, Nonas C, Pi-Sunyer X, Vanltallie T, Wedral E. 1997. Obesity solution: report of a meeting. Nutr Res 55: 150-156
  3. Huh K.B. 1990. Recent progress in obesity research: pathogenesis of obesity. Kor J Nutr 23: 333-336
  4. McGee D.L. 2005. Body mass index and mortality: a metaanalysis based on person-level data from twenty-six observational studies. Ann Epidemiol 15: 87-97 https://doi.org/10.1016/j.annepidem.2004.05.012
  5. Lang A, Froelicher E.S. 2006. Management of over weight and obesity in adults: Behavioral intervention for long-term weight loss and maintenance. Eur J Cardiovas Nurs 5: 102-114 https://doi.org/10.1016/j.ejcnurse.2005.11.002
  6. Hwang C.S, Shin D.H. 2005. Effects of enzyme treatment on physicochemical characteristics of small red bean percolate. Kor J Food Sci Technol 37: 187-193
  7. Kwon S.T, Kwon S.H, Ma M.S, Park Y.I. 2002. Lowering effects in plasma cholesterol and body weight by mycelial extracts of two mushrooms: Agaricus blazai and Lentinus edodes. Korean J Microbiol Biotechnol 30: 402-409
  8. Ballinger A, Peikin S.R. 2002. Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 440: 109-117 https://doi.org/10.1016/S0014-2999(02)01422-X
  9. Ryu J.M, Lee T.H, Seo I.K, Lee S.H, Jang Y.H, Kim Y.B, Wang S.Y. 2006. Anti-obesity effects of Misaengtang in rats fed on a high-fat diet or normal diet. Toxicol Res 22: 339-348
  10. Lee S.H, Park H.J, Chun H.K, Cho S.Y, Jung H.J, Cho S.M, Kim D.Y, Kang M.S, Lillehoj H.S. 2007. Dietary phytic acid improves serum and hepatic lipids levels in aged ICR mice fed a high-cholesterol diet. Nutr Res 27: 505-510 https://doi.org/10.1016/j.nutres.2007.05.003
  11. Jayasooriya A.P, Sakono M, Yukizaki C, Kawano M, Yamamoto K, Fukuda N. 2000. Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol enriched diets. J Ethnopharmacol 72: 331-336 https://doi.org/10.1016/S0378-8741(00)00259-2
  12. Lee J.J, Shin H.D, Lee Y.M, Kim A.R, Lee M.Y. 2009. Effect of broccoli sprouts on cholesterol-lowering and anti obesity effects in rats fed high fat diet. J Korean Soc Food Sci Nutr 38: 309-318 https://doi.org/10.3746/jkfn.2009.38.3.309
  13. Park Y.S, Yoon Y, Ahn H.S. 2007. Platycodon grandiflorum extract represses up regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats. World J Gastroenterol 13: 3493-3499 https://doi.org/10.3748/wjg.v13.i25.3493
  14. Kim H.S, Kim T.W, Kim D.J, Hwang H.J, Lee H.J, Choe M. 2007. Effects of natural plants supplementation on adipocyte size of the epididymal fat pads in rats. J Korean Soc Food Sci Nutr 36: 419-423 https://doi.org/10.3746/jkfn.2007.36.4.419
  15. Park S.H, Ko S.K, Chung S.H. 2005. Euonymus alatus prevents the hyperglycemia and hyperlipidemia induced by high-fat diet in ICR mice. J Ethnopharmacol 102: 326-335 https://doi.org/10.1016/j.jep.2005.06.041
  16. Wat E, Tandy S, Kapera E, Kamili A, Chung R.W.S, Brown A, Rowney M, Cohn J.S. 2009. Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis 205: 144-150 https://doi.org/10.1016/j.atherosclerosis.2008.12.004
  17. Cho Y.S, Shon M.Y, Lee M.K. 2007. Lipid-lowering action of powder and water extract of mulberry leaves in C57BL/6 mice fed high-fat diet. J Korean Soc Food Sci Nutr 36: 405-410 https://doi.org/10.3746/jkfn.2007.36.4.405
  18. Davignon J, Cohn J.S. 1996. Triglyceride: a risk factor for coronary heart disease. Atherosclerosis 124: S57-S64 https://doi.org/10.1016/0021-9150(96)05858-3
  19. Moon G.A, Choi S.M, Kim S.H, Kim S.S, Kang J.Y, Yoon Y. 2003. Human and animal study on the natural food for obesity and metabolic syndrome risk factors. J Korean Soc Food Sci Nutr 32: 1394-1400 https://doi.org/10.3746/jkfn.2003.32.8.1394

Cited by

  1. Antihyperlipidemic Effect of Diet Containing Portulaca oleracea L. Ethanol Extract in High Fat Diet-Induced Obese Mice vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.538
  2. Screening of Personalized Immunostimulatory Activities of Saengsik Materials and Products Using Human Primary Immune Cell vol.43, pp.9, 2014, https://doi.org/10.3746/jkfn.2014.43.9.1325
  3. Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.651
  4. Anti-Obesity Effects of Foeniculum fructus Water Extract vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1604
  5. Repressive effects of red bean, Phaseolus angularis, extracts on obesity of mouse induced with high-fat diet via downregulation of adipocyte differentiation and modulating lipid metabolism pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0421-2