DOI QR코드

DOI QR Code

Electroluminescent Properties of Spiro[fluorene-benzofluorene]-Containing Blue Light Emitting Materials

  • Jeon, Soon-Ok (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Lee, Hyun-Seok (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Jeon, Young-Min (Department of Chemistry and Institute of Basic Science, Dankook University) ;
  • Kim, Joon-Woo (OLED Team, Daejoo Electronic Materials) ;
  • Lee, Chil-Won (OLED Team, Daejoo Electronic Materials) ;
  • Gong, Myoung-Seon (Department of Chemistry and Institute of Basic Science, Dankook University)
  • 발행 : 2009.04.20

초록

New spiro[fluorene-7,9′-benzofluorene]-based blue host material, 5-phenyl-spiro[fluorene-7,9′-benzofluorene] (BH-1P), was successfully prepared by reacting 5-bromo-spiro[fluorene-7,9′-benzofluorene] (1) with phenyl boronic acid through the Suzuki reaction. 5-(N,N-Diphenyl)amino-spiro[fluorene-7,9′-benzofluorene] (BH-1DPA) and diphenyl-[4-(2-[1,1;4,1]terphenyl-4-yl-vinyl)-phenyl]amine (BD-1) were used as dopant materials. 2,5-Bis-(2',2"- bipyridin-6-yl)-1,1-diphenyl-3,4-diphenylsilacyclopentadiene (ET4) and Alq3 were used as electron transfer materials. Their UV absorption, photoluminescence and thermal properties were examined. The blue OLEDs with the configuration of ITO/DNTPD/$\alpha$-NPD/BH-1P:5% dopant/$Alq_3$ or ET4/LiF-Al prepared from the BH-1P host and BH-1DPA and BD-1 dopants showed a blue EL spectrum at 452 nm at 10 V and a luminance of 923.9 cd/$m^2$ with an efficiency of 1.27 lm/W at a current density of 72.57 mA/$cm^2$.

키워드

참고문헌

  1. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Campos, R. A.; Kovalev, I. P.; Guo, Y.; Wakili, N.; Skotheim, I. J. Appl. Phys. 1996, 80, 7144. https://doi.org/10.1063/1.363736
  3. Bradley, D. D. C.; Weaver, M. S.; Lidzey, D. G.; Fisher, T. A. Thin Solid Films 1996, 273, 39. https://doi.org/10.1016/0040-6090(95)06767-1
  4. Hamada, Y.; Kanno, H.; Tsujioka, T.; Takahashi, H.; Usuki, T. Appl. Phys. Lett. 1999, 75, 1682. https://doi.org/10.1063/1.124790
  5. Xie, Z. Y.; Hung, L. S.; Lee, S. T. Appl. Phys. Lett. 2001, 79, 1048. https://doi.org/10.1063/1.1390479
  6. Juan, Q.; Yong, Q.; Liduo, W. Appl. Phys. Lett. 2002, 81, 4913. https://doi.org/10.1063/1.1532756
  7. Wu, R.; Schumm, J. S.; Pearson, D. L.; Tour, J. M. J. Org. Chem. 1996, 61, 6906. https://doi.org/10.1021/jo960897b
  8. Salbeck, J.; Yu, N.; Bauer, J.; Weissortel, F.; Bestgen, H. Synth. Met. 1997, 91, 209. https://doi.org/10.1016/S0379-6779(98)80033-7
  9. Katsis, D.; Geng, Y. H.; Ou, J. J.; Culligan, S. W.; Trajkovska, A.; Chen, S. H.; Rothberg, L. J. Chem. Mater. 2002, 14, 1332. https://doi.org/10.1021/cm010679l
  10. Bach, U.; Cloedt, K. D.; Spreitzer, H.; Gratzel, M. Adv. Mater. 2000, 12, 1060. https://doi.org/10.1002/1521-4095(200007)12:14<1060::AID-ADMA1060>3.0.CO;2-R
  11. Mitschke, U.; B$\ddot(a)$uerle, P. J. Chem. Soc. 2001, 740.
  12. Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011. https://doi.org/10.1021/cr0501341
  13. Prelog, V.; Bedekovic, D. Helv. Chim. Acta 1979, 62, 2285. https://doi.org/10.1002/hlca.19790620725
  14. Harada, N.; Ono, H.; Nishiwaki, T.; Uda, H. J. Chem. Soc., Chem. Commun. 1991, 1753.
  15. Alcazar, V.; Diederich, F. Angew. Chem. 1992, 104, 1503. https://doi.org/10.1002/ange.19921041115
  16. Cuntze, J.; Diederich, F. Helv. Chim. Acta 1997, 80, 897. https://doi.org/10.1002/hlca.19970800323
  17. Jeon, S. O.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Org. Electron. 2008, 9, 522. https://doi.org/10.1016/j.orgel.2008.02.016
  18. Kim, K. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Org. Electron. 2008, 9, 797. https://doi.org/10.1016/j.orgel.2008.05.013
  19. Jeon, S. O.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Synth. Met. In press.
  20. Kim, K. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Synth. Met. 2008, 158, 870. https://doi.org/10.1016/j.synthmet.2008.06.005
  21. Kim, K. S.; Jeon, Y. M.; Kim, J. W.; Lee, C. W.; Gong, M. S. Dyes and Pigments 2009, 81, 174. https://doi.org/10.1016/j.dyepig.2008.09.023
  22. Kim, J. H.; Jeon, Y. M.; Jang, J. G.; Ryu, S.; Chang, H. J.; Kim, J. W.; Lee, C. W.; Gong, M. S. Bull. Korean Chem. Soc. 2009, 33, 647.

피인용 문헌

  1. New Fluorescent Blue OLED Host and Dopant Materials Based on the Spirobenzofluorene vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1475
  2. Synthesis of New Spiro[benzo[c]fluorene-7,9'-fluorene] Dimers and Their Optical Properties vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1414
  3. Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2955
  4. Highly efficient blue OLED based on 9-anthracene-spirobenzofluorene derivatives as host materials vol.20, pp.47, 2010, https://doi.org/10.1039/c0jm00593b
  5. Deep Blue Fluorescent Host Materials Based on a Novel Spiro[benzo[c]fluorene-7,9'-fluorene] Core Structure with Side Aromatic Wings vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2287
  6. Preparation of Novel Fused Ring Spiro[benzotetraphene-fluorene] Derivatives and Application for Deep-Blue Host Materials vol.35, pp.6, 2009, https://doi.org/10.5012/bkcs.2014.35.6.1639
  7. Versatile p‐Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes vol.128, pp.21, 2016, https://doi.org/10.1002/ange.201600414
  8. Versatile p‐Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes vol.55, pp.21, 2009, https://doi.org/10.1002/anie.201600414