DOI QR코드

DOI QR Code

Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results

  • 발행 : 2009.11.20

초록

A new algorithm for determining noise level is proposed for more reliability in interpreting spectral data for complex Fourier transform ion cyclotron resonance (FTICR) mass spectra of petroleum. In the new algorithm, a moving window with a fixed number of data points was adopted, instead of a fixed m/z width. In the analysis of petroleum, it was found that a moving window of 50,000 or more data points was optimal. This optimized automated peak picking performed well even with frequency-dependant noise in the mass spectrum. Additionally, this fast, automated peak picking algorithm was suitable for the analysis of a large set of samples.

키워드

참고문헌

  1. Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spec. Rev. 2007, 26, 51-78 https://doi.org/10.1002/mas.20108
  2. Wu, Z.; Rodgers, R. P.; Marshall, A. G. J. Agric. Food Chem. 2004, 52, 5322-5328 https://doi.org/10.1021/jf049596q
  3. Cooper, H. J.; Marshall, A. G. J. Agric. Food Chem. 2001, 49, 5710-5718 https://doi.org/10.1021/jf0108516
  4. Wu, Z.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Anal. Chem. 2002, 74, 1879-1883 https://doi.org/10.1021/ac011071z
  5. Wu, Z.; Rodgers, R. P.; Marshall, A. G. Energy & Fuels 2004, 18, 1424-1428 https://doi.org/10.1021/ef049933x
  6. Kim, S.; Kaplan, L. A.; Hatcher, P. G. Limnol. Oceanogr. 2006, 51, 1054-1063 https://doi.org/10.4319/lo.2006.51.2.1054
  7. Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75, 5336-5344 https://doi.org/10.1021/ac034415p
  8. Marshall, A. G.; Rodgers, R. P. Acc. Chem. Res. 2004, 37, 53-59 https://doi.org/10.1021/ar020177t
  9. Marshall, A. G.; Rodgers, R. P. PNAS 2008, 105, 18090-18095 https://doi.org/10.1073/pnas.0805069105
  10. Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 2000, 11, 320-332 https://doi.org/10.1016/S1044-0305(99)00157-9
  11. Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. PNAS 2000, 97, 10313-10317 https://doi.org/10.1073/pnas.97.19.10313
  12. Kaur, P.; O'Connor, P. B. J. Am. Soc. Mass Spectrom. 2006, 17, 459-468 https://doi.org/10.1016/j.jasms.2005.11.024
  13. Chen, L.; Yap, Y. L. J. Am. Soc. Mass Spectrom. 2008, 19, 46-54 https://doi.org/10.1016/j.jasms.2007.10.015
  14. Johnson, K. L.; Mason, C. J.; Muddiman, D. C.; Eckel, J. E. Anal. Chem. 2004, 76, 5097-5103 https://doi.org/10.1021/ac0497003
  15. McIlwain, S.; Page, D.; Huttlin, E. L.; Sussman, M. R. Bioinformatics 2007, 23, I328-I336 https://doi.org/10.1093/bioinformatics/btm198
  16. Park, K.; Yoon, J. Y.; Lee, S.; Paek, E.; Park, H.; Jung, H. J.; Lee, S. W. Anal. Chem. 2008, 80, 7294-7303 https://doi.org/10.1021/ac800913b
  17. Kim, S.; Rodgers, R. P.; Marshall, A. G. Int. J. Mass Spectrom. 2006, 251, 260-265 https://doi.org/10.1016/j.ijms.2006.02.001

피인용 문헌

  1. The Improvement in Signal Integrity of FT-ICR MS vol.60, pp.1, 2011, https://doi.org/10.5370/KIEE.2011.60.1.201
  2. Study of Double Bond Equivalents and the Numbers of Carbon and Oxygen Atom Distribution of Dissolved Organic Matter with Negative-Mode FT-ICR MS vol.83, pp.11, 2011, https://doi.org/10.1021/ac200464q
  3. Planar Limit-Assisted Structural Interpretation of Saturates/Aromatics/Resins/Asphaltenes Fractionated Crude Oil Compounds Observed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.83, pp.15, 2011, https://doi.org/10.1021/ac2011685
  4. Molecular Characterization and Comparison of Shale Oils Generated by Different Pyrolysis Methods vol.26, pp.2, 2012, https://doi.org/10.1021/ef201517a
  5. Characterization of Crude Oils at the Molecular Level by Use of Laser Desorption Ionization Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry vol.84, pp.20, 2012, https://doi.org/10.1021/ac301615m
  6. Chemical profiles and hypoglycemic activities of mulberry leaf extracts vary with ethanol concentration vol.22, pp.5, 2013, https://doi.org/10.1007/s10068-013-0235-1
  7. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level vol.27, pp.4, 2013, https://doi.org/10.1021/ef3015662
  8. Application of Atmospheric Pressure Photo Ionization Hydrogen/Deuterium Exchange High-Resolution Mass Spectrometry for the Molecular Level Speciation of Nitrogen Compounds in Heavy Crude Oils vol.85, pp.20, 2013, https://doi.org/10.1021/ac402157r
  9. Application of Phase Correction to Improve the Interpretation of Crude Oil Spectra Obtained Using 7 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry vol.25, pp.1, 2014, https://doi.org/10.1007/s13361-013-0747-1
  10. Evaluation of Laser Desorption Ionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Study Metalloporphyrin Complexes vol.28, pp.11, 2014, https://doi.org/10.1021/ef500997m
  11. Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics vol.34, pp.2, 2014, https://doi.org/10.1002/mas.21438
  12. Optimization and Application of APCI Hydrogen–Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds vol.26, pp.9, 2015, https://doi.org/10.1007/s13361-015-1166-2
  13. Characterization of Petroleum Heavy Oil Fractions Prepared by Preparatory Liquid Chromatography with Thin-Layer Chromatography, High-Resolution Mass Spectrometry, and Gas Chromatography with an Atomic Emission Detector vol.30, pp.4, 2016, https://doi.org/10.1021/acs.energyfuels.6b00296
  14. Correlation among Petroleomics Data Obtained with High-Resolution Mass Spectrometry and Elemental and NMR Analyses of Maltene Fractions of Atmospheric Pressure Residues vol.30, pp.9, 2016, https://doi.org/10.1021/acs.energyfuels.6b01047
  15. Optimization and application of atmospheric pressure chemical and photoionization hydrogen–deuterium exchange mass spectrometry for speciation of oxygen-containing compounds vol.408, pp.12, 2016, https://doi.org/10.1007/s00216-016-9399-x
  16. Application of Atmospheric Pressure Photoionization H/D-exchange Mass Spectrometry for Speciation of Sulfur-containing Compounds vol.28, pp.8, 2017, https://doi.org/10.1007/s13361-017-1678-z
  17. Interpreting Chemical Structures of Compounds in Crude Oil Based on the Tandem Mass Spectra of Standard Compounds Obtained at the Same Normalized Collision Energy vol.31, pp.7, 2017, https://doi.org/10.1021/acs.energyfuels.7b00882
  18. Extension of the Analytical Window for Characterizing Aromatic Compounds in Oils Using a Comprehensive Suite of High-Resolution Mass Spectrometry Techniques and Double Bond Equivalence versus Carbon Number Plot vol.31, pp.8, 2017, https://doi.org/10.1021/acs.energyfuels.7b00962
  19. Comprehensive chemical comparison of fuel composition and aerosol particles emitted from a ship diesel engine by gas chromatography atmospheric pressure chemical ionisation ultra-high resolution mass spectrometry with improved data processing routines vol.23, pp.1, 2017, https://doi.org/10.1177/1469066717694286
  20. Hydrogen/deuterium exchange in mass spectrometry vol.37, pp.6, 2018, https://doi.org/10.1002/mas.21565
  21. Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O vol.29, pp.1, 2018, https://doi.org/10.1007/s13361-017-1831-8
  22. Current literature in mass spectrometry vol.45, pp.5, 2010, https://doi.org/10.1002/jms.1651
  23. Determining Collision Cross-Sections of Aromatic Compounds in Crude Oil by Using Aromatic Compound Mixture as Calibration Standard vol.40, pp.2, 2018, https://doi.org/10.1002/bkcs.11653
  24. Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel vol.3, pp.2, 2009, https://doi.org/10.5478/msl.2012.3.2.43
  25. Development and Application of a Software Tool for the Interpretation of Organic Mixtures' Spectra - Hydrogen Deuterium Exchange (STORM-HDX) to Interpret APPI HDX MS Spectra vol.35, pp.3, 2009, https://doi.org/10.5012/bkcs.2014.35.3.749
  26. Effective screening for the anti-hypertensive of selected herbs used in the traditional Korean medicines vol.59, pp.4, 2009, https://doi.org/10.1007/s13765-016-0190-7
  27. Themis: Batch Preprocessing for Ultrahigh-Resolution Mass Spectra of Complex Mixtures vol.89, pp.21, 2017, https://doi.org/10.1021/acs.analchem.7b02345
  28. Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil vol.89, pp.22, 2009, https://doi.org/10.1021/acs.analchem.7b02644
  29. Optimization and Application of Paper-Based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter vol.90, pp.20, 2018, https://doi.org/10.1021/acs.analchem.8b02668
  30. Analyzing Solid-Phase Natural Organic Matter Using Laser Desorption Ionization Ultrahigh Resolution Mass Spectrometry vol.91, pp.1, 2019, https://doi.org/10.1021/acs.analchem.8b04032
  31. Application of Online Liquid Chromatography 7 T FT-ICR Mass Spectrometer Equipped with Quadrupolar Detection for Analysis of Natural Organic Matter vol.91, pp.12, 2009, https://doi.org/10.1021/acs.analchem.9b00689
  32. Elucidating molecular level impact of peat fire on soil organic matter by laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry vol.411, pp.27, 2009, https://doi.org/10.1007/s00216-019-02108-2
  33. Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer vol.91, pp.22, 2009, https://doi.org/10.1021/acs.analchem.9b02255
  34. KairosMS: A New Solution for the Processing of Hyphenated Ultrahigh Resolution Mass Spectrometry Data vol.92, pp.5, 2009, https://doi.org/10.1021/acs.analchem.9b05113
  35. Molecular Level Investigation of Oil Sludge at the Bottom of Oil Tank in Ratawi Oil Field by Atmospheric Pressure Photo Ionization Ultrahigh‐resolution Mass Spectrometry vol.41, pp.4, 2020, https://doi.org/10.1002/bkcs.11991
  36. Reproducibility of Crude Oil Spectra Obtained with Ultrahigh Resolution Mass Spectrometry vol.92, pp.14, 2009, https://doi.org/10.1021/acs.analchem.0c00865
  37. Comprehensive Lists of Internal Calibrants for Ultrahigh-Resolution Mass Spectrometry Analysis of Crude Oil and Natural Organic Matter and Their Preparation Recipes vol.32, pp.2, 2021, https://doi.org/10.1021/jasms.0c00456
  38. Application of Laser-Desorption Silver-Ionization Ultrahigh-Resolution Mass Spectrometry for Analysis of Petroleum Samples Subjected to Hydrotreating vol.35, pp.19, 2009, https://doi.org/10.1021/acs.energyfuels.1c01824
  39. Molecular-Level Structural Analysis of Hydrotreated and Untreated Atmospheric Residue Oils via Atmospheric Pressure Photoionization Cyclic Ion Mobility Mass Spectrometry and Ultrahigh-Resolution Mass vol.35, pp.22, 2009, https://doi.org/10.1021/acs.energyfuels.1c02369
  40. Determination of anthropogenic organics in dichlomethane extracts of aerosol particulate matter collected from four different locations in China and Republic of Korea by GC-MS and FTICR-MS vol.805, pp.None, 2009, https://doi.org/10.1016/j.scitotenv.2021.150230
  41. Improved coverage of plant metabolites using powder laser desorption/ionization coupled with Fourier-transform ion cyclotron mass spectrometry vol.373, pp.no.pb, 2009, https://doi.org/10.1016/j.foodchem.2021.131541