DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolyses of Benzhydryl Halides Using an Extended Grunwald-Winstein Equation

  • Koh, Han-Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Jeonju National University of Education) ;
  • Kim, Cheol-Ju (Department of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University)
  • Published : 2009.02.20

Abstract

Rates of solvolyses of benzhydryl chloride ($Ph_2$CHCl, 1) and benzhydryl bromide ($Ph_2$CHBr, 2) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, 2,2,2-trifluoroethanol (TFE) and acetone are reported. Solvolyses were also carried out in TFE-ethanol mixtures. Application of the extended Grunwald-Winstein equation led to l value of 1.19 (1), 1.29 (2) and m value of 1.00 (1), 0.77 (2), correlation coefficient of 0.965 (1) and 0.970 (2). Sensitivities (l = 1.19 (1), 1.29 (2) and m = 1.00 (1), 0.77 (2)) were similar to those obtained for several previously studied solvolyses, in which an $S_N$2 pathway is proposed for the solvolyses of benzhydryl halides ($Ph_2$CHX, X = Cl or Br).

Keywords

References

  1. Richard, J. P.; Rothenberg, M. E.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 1361 https://doi.org/10.1021/ja00317a031
  2. Richard, J. P.; Jencks, W. P. ibid. 1984, 106, 1396 https://doi.org/10.1021/ja00317a034
  3. Ta-Shma, R.; Jencks, W. P. ibid. 1986, 108, 8040 https://doi.org/10.1021/ja00285a027
  4. Allen, A. D.; Kanagasapathy, V. M.; Tidwell, T. T. ibid. 1985, 107, 4513 https://doi.org/10.1021/ja00301a023
  5. Richard, J. P. ibid. 1989, 111, 1455 https://doi.org/10.1021/ja00186a047
  6. Amyes, T. L.; Richard, J. P. ibid. 1990, 112, 9507 https://doi.org/10.1021/ja00182a009
  7. Amyes, T. L.; Richard, J. P.; Novak, M. ibid. 1992, 114, 8032 https://doi.org/10.1021/ja00047a010
  8. McClelland, R. A.; Cozens, F. L.; Steenken, S.; Amyes, T. L.; Richard, J. P. J. Chem. Soc., Perkin Trans. 2 1993, 1717
  9. Richard, J. P.; Jagannadham, V.; Amyes, T. L.; Mishima, M.; Tsuno, Y. J. Am. Chem. Soc. 1994, 116, 6707
  10. Richard, J. P. J. Org. Chem. 1994, 59, 25 https://doi.org/10.1021/jo00080a007
  11. Amyes, T. L.; Stevens, I. W.; Richard, J. P. J. Org. Chem. 1993, 58, 6057 https://doi.org/10.1021/jo00074a036
  12. Lee, I.; Koh, H. J.; Hong, S. N.; Lee, B. S. Gazzetta Chimica Italiana 1995, 125, 347
  13. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  14. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  15. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  16. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174
  17. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  18. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296
  19. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  20. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol 1, pp 81-115
  21. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759 https://doi.org/10.1002/poc.425
  22. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834 https://doi.org/10.1021/jo9814905
  23. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040 https://doi.org/10.1039/b402093f
  24. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399 https://doi.org/10.1021/jo020467n
  25. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88 https://doi.org/10.1002/poc.1124
  26. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120 https://doi.org/10.1021/jo9714270
  27. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051 https://doi.org/10.1021/jo005630y
  28. Kevill, D. N.; D'Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790 https://doi.org/10.1135/cccc19991790
  29. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1994, 753
  30. Koh, H. H.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1927 https://doi.org/10.5012/bkcs.2008.29.10.1927
  31. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881 https://doi.org/10.1002/poc.569
  32. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657 https://doi.org/10.5012/bkcs.2007.28.4.657
  33. Kyong, J. B.; Won, H. S.; Lee, Y. H.; Kevill, D. N. Bull. Korean Chem. Soc. 2005, 26, 661 https://doi.org/10.5012/bkcs.2005.26.4.661
  34. Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.; Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  35. Kevill, D. N.; Kim, C. B. J. Org. Chem. 2005, 70, 1490. https://doi.org/10.1021/jo048103d
  36. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc, 2000, 21, 662.
  37. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  38. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.3390/i7070186
  39. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  40. Kyong, J. B.; Won, H. S.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  41. Hoffmann, H. M. R. J. Chem. Soc. 1965, 6753. https://doi.org/10.1039/jr9650006753
  42. Ingold, C. K. In Structure and Mechanism in Organic Chemistry, 2nd ed.; Cornell University Press: Ithaca, NY, 1969; pp 471-473.
  43. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper and Row: New York, 1987; pp 373-376.
  44. Kevill, D. N.; Kolwyck, K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300. https://doi.org/10.1021/ja00728a012
  45. Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518. https://doi.org/10.1021/ja00821a027
  46. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  47. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240.
  48. Kevill, D. N.; Koyoshi, F.; D'Souza, M. J. Int. J. Mol. Sci. 2007, 8, 346. https://doi.org/10.3390/i8040346
  49. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  50. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  51. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019

Cited by

  1. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1897
  2. Correlation of the Rates on Solvolysis of 2,2,2-Trichloroethyl Chloroformate Using the Extended Grunwald-Winstein Equation vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1729
  3. Kinetic Studies of the Solvolyses of Phenyl 4-Methylphenoxy Thiophosphinyl Chloride vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2437
  4. Rate-Product Correlations for the Solvolysis of 5-Nitro-2-Furoyl Chloride vol.33, pp.10, 2009, https://doi.org/10.5012/bkcs.2012.33.10.3293
  5. Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride vol.35, pp.1, 2009, https://doi.org/10.5012/bkcs.2014.35.1.51
  6. Rate and Product Studies of 5-Dimethylamino-Naphthalene-1-Sulfonyl Chloride under Solvolytic Conditions vol.35, pp.8, 2009, https://doi.org/10.5012/bkcs.2014.35.8.2285
  7. Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate vol.35, pp.8, 2009, https://doi.org/10.5012/bkcs.2014.35.8.2465
  8. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2009, https://doi.org/10.5012/jkcs.2017.61.1.25