DOI QR코드

DOI QR Code

Conjugates of Enkephalin Analogs: Synthesis and Discrimination of μ and δ Opioid Receptors Based on Membrane Compartment Concept

  • Hong, Nam-Joo (School of Biotechnology, Yeungnam University) ;
  • Jin, Dong-Hoon (Department of Anatomy and Tumor Immunity Medical Research Center, College of Medicine, Seoul National University) ;
  • Hong, Eun-Young (School of Chemical and Biological Engineering, Seoul National University)
  • Published : 2009.03.20

Abstract

A series of conjugated cyclic and linear enkephalin analogs, Tyr-c[D-A2bu-Gly-Phe-Asp(NH-X)], where X = methyl, stearyl or$ PEG_350$, and Tyr-D-Ala-Gly-Phe-Cys(S-X), where X = methyl, octyl, or farnesyl, were synthesized in solution to investigate the receptor selectivity of opioids based on Schwyzer's membrane compartment $concepts.^{5,6}$ Cyclizations of the target compounds were achieved in high yields (> 60%) employing BOP, $NaHCO_3$ in DMF despite the steric hindrance of the bulky pendant groups. In the binding assay, the hydrophobic fatty acyl conjugates retained $\mu$-receptor selectivity. The unsaturated farnesyl conjugate exhibited the increased binding affinity than the saturated stearyl conjugate for both $\mu$-and $\delta$-opioid receptors. The PEG conjugates displayed the $\delta$-receptor selectivity. The low molecular weight $PEG_350$ conjugate exhibited the increase selectivity than the high molecular weight $PEG_5000$ conjugate to the $\delta$-receptor. The results of this study support the membrane compartment concepts.

Keywords

References

  1. Morley, T. Annu. Rev. Pharmacol. Toxicol. 1980, 20, 81 https://doi.org/10.1146/annurev.pa.20.040180.000501
  2. Grazyna, W. Bioorganic and Medicinal Chemistry Letters 2004, 14(18), 4731. https://doi.org/10.1016/j.bmc.2008.02.074
  3. David, B.; Paul, K.; Chris, F.; Kay, B.; Jan, K. Org. Biomol. Chem. 2006, 3, 416.
  4. Shinada, T. Tetrahedron Letters 2007, 48(43), 7614. https://doi.org/10.1016/j.bmcl.2004.06.077
  5. Mark, P. D. Bioorganic and Medicinal Chemistry. 2008, 16(8), 4341 https://doi.org/10.1016/j.bmc.2008.02.074
  6. Goodman, M.; Chorev, M. In Perspective in Peptide Chemistry; Eberle, R.; Geiger and T. Wieland, Ed.; Karger Basel: 1981; p 283.
  7. Katarzyna, F.; Marta, O.; Jacek, W.; Chung, N.; Schiller, P. W.; Danuta, P.; Agnieszka, Z.; Agnieszka, P.; Ewa, W.; Jan, I. Journal of Peptide Science 2005, 11(6), 347. https://doi.org/10.1023/A:1015992828666
  8. Agnieszka, Z.; Sylwia, R.; Ukasz, R.; Nga, N. C.; Cezary, C.; Ewa, W.; Schiller, P. W.; Jerzy, C.; Jan, I. Journal of Peptide Science 2008, 14(7), 830. https://doi.org/10.1021/jm00079a015
  9. Weltrowska, G. Bioorg. Med. Chem. Lett. 2004, 14, 4731 https://doi.org/10.1021/jm00111a007
  10. Schwyzer, R. Biochemistry 1986, 52, 6335
  11. Schwyzer, R.; Kimura, S.; Erne, D. Peptides. 12th Amer. Peptide Symp. 1992, 168
  12. Hshimoto, M.; Takada, K.; Kiso, Y.; Muranishi, S. Pharm. Res. 1989, 6, 171 https://doi.org/10.1002/bit.260340413
  13. Fahad, A. B.; Hruby, V. J.; Yaghoubi, N.; Marwan, M.; Hadley, M. J. Med. Chem. 1992, 35, 118. https://doi.org/10.1016/0167-7799(88)90103-5
  14. Hruby, V. J. J. Pept. Res. 2005, 66, 309. https://doi.org/10.1172/JCI111715
  15. Portoghese, P.; Aburbeh, A.; Larson, D. J. Med. Chem. 1991, 34, 1966 https://doi.org/10.1073/pnas.84.6.1487
  16. Abuchowski, A.; Macoy, J. R.; Palczuk, N.; Danvis, F. J. Biol. Chem. 1997, 252, 3582
  17. Usui, M.; Matsuhashi, T. J. Immunol. 1979, 122, 1266
  18. Kondo, A.; Kishimura, M.; Katoh, S.; Sada, E. Biotech. Bioengineering 1989, 34, 532 https://doi.org/10.1002/bit.260340413
  19. Inada, Y.; Takahashi, K.; Yoshimoto, T.; Kodera, Y.; Saito, Y. Trends Biotec. 1988, 6, 131 https://doi.org/10.1002/psc.303
  20. Rajagospaian, S.; Gonias, L.; Pizzo, S.; Chin, J. Invest. 1985, 75, 413 https://doi.org/10.1021/jm00114a023
  21. Katre, N. V.; Knaut, M. J.; Caird, W. J. Proc. Nat. Acad. Sci. USA. 1987, 84, 1487 https://doi.org/10.1073/pnas.84.6.1487
  22. Davis, F. F.; Van, E. T.; Palczuk, N. Ger. Pat. 1976, 2433833 https://doi.org/10.1002/psc.650
  23. Kawasaki, K.; Yamashiro, Y.; Namikawa, M.; Hama, T.; Mayumi, T. 1992 Chinese Peptide Symp. 1992, 36 https://doi.org/10.1002/masy.200351125
  24. Goodman, M.; Zapf, C.; Rew, Y. Pept. Sci. 2001, 60, 229 https://doi.org/10.1002/1097-0282(2001)60:3<229::AID-BIP10034>3.0.CO;2-P
  25. Pawlak, D.; Pachulska, M.; Schiller, P.; Chung, N. J. Peptide Science 2001, 7, 128 https://doi.org/10.1002/psc.665
  26. Schiller, P.; Weltrowska, G.; Nguyen, T.; Lemieux, C.; Chung, N.; Marsden, J.; Wilkes, B. C. T. J. Med. Chem. 1991, 34, 3125 https://doi.org/10.1002/1521-3757(20020503)114:9<1670::AID-ANGE1670>3.0.CO;2-1
  27. Lebl, M.; Jill, P.; Fric, I.; Hruby, V. Int. J. of Pept. Prot. Res. 1990, 36, 321
  28. Wiszniewska, A.; Kunce, D.; Chung, N.; Schiller, P. J. Pept. Sci. 2005, 11, 579 https://doi.org/10.1002/psc.650
  29. Goodman, M. Macromol. Symp. 2003, 201, 223 https://doi.org/10.1021/ja00311a048
  30. Kim, D.; Fauchere, J.; Schwtzer, R.; Hoppe-Seyler's, Z. Physiol. Chem. 1981, 362, 601 https://doi.org/10.1002/anie.196809191
  31. Mammi, S.; Goodman, M. J. Pept. Sci. 2005, 11, 273 https://doi.org/10.1002/psc.665
  32. Juan, R.; Valle, D.; Goodman, M. Angew. Chem. 2002, 114, 1670 https://doi.org/10.1002/1521-3757(20020503)114:9<1670::AID-ANGE1670>3.0.CO;2-1
  33. Neukamm, M.; Pinto, A.; Metzler-Nolte, N. Chem. Commun. 2008, 2, 232 https://doi.org/10.1111/j.1747-0285.2008.00720.x
  34. Blomberg, D.; Kreye, P.; Fowler, C.; Kihlberg, J. Org. Biomol. Chem. 2006, 3, 416 https://doi.org/10.1002/psc.620
  35. Nicolau, K. C.; Veale, C. A.; Webber, S. E.; Katerinopoulos, H. A. J. Am. Chem. Soc. 1985, 107, 7515 https://doi.org/10.1021/ja00311a048
  36. Gibson, M. S.; Bradshaw, K. W. Angew. Chem. Inter. Edit. 1968, 7, 919 https://doi.org/10.1016/0024-3205(91)90537-L
  37. Paton, W. P. Br. J. Pharmacol. 1957, 12, 119
  38. Henderson, G.; Hughes, J.; Kosterlitz, H. W. Br. J. Pharmacol. 1971, 46, 764 https://doi.org/10.1016/0006-2952(83)90476-8
  39. Weltrowska, G.; Nguyen, T.; Lemieux, C.; Chung, N.; Schiller, P. Chem. Biol. Drug Desig. 2008, 72, 337 https://doi.org/10.1111/j.1747-0285.2008.00720.x
  40. Witkowska, R.; Chung, N.; Schiller, P.; Zabrocki, J. J. Pept. Sci. 2005, 11, 361 https://doi.org/10.1111/j.1471-4159.1987.tb09987.x
  41. Chen, H.; Chung, N.; Lemieux, C.; Zelent, B.; Wilkes, C.; Schiller, P. Pept. Sci. 2005, 80, 325 https://doi.org/10.1002/bip.20200
  42. Yatsh, T.; Jang, J. D.; Braun, K.; Goodman, M. Life Sciences 1991, 48, 623 https://doi.org/10.1016/0024-3205(91)90537-L
  43. Hong, N. J.; Goodman, M. Proc. 13th. Amer. Pept. Symp. 1993, 128 https://doi.org/10.1146/annurev.pa.20.040180.001221
  44. Garzon, J.; Jem, M. F.; Lee, N. Biochem. Pharmacol. 1983, 32, 1523 https://doi.org/10.1111/j.1471-4159.1986.tb13062.x
  45. Farahbakhsh, Z. T.; Beamer, D. W.; Lee, N. M. J. Neurochem. 1989, 46, 953
  46. Haseqawa, J. I.; Loh, H. H.; Lee, N. M. J. Neurochem. 1987, 49, 1007 https://doi.org/10.1111/j.1471-4159.1987.tb09987.x
  47. Abood, L. G.; Salem, N.; McNeil, M.; Butler, M. Biochem. Biophys. Acta 1978, 530, 35 https://doi.org/10.1016/0006-2952(85)90095-4
  48. Dunlap, C. E.; Leslie, F. M.; Rado, M.; Cox, B. M. Molec. Pharmacol. 1979, 16, 105
  49. Loh, H. H.; Law, P. Y. Annu. Rev. Pharmacol. 1980, 20, 201 https://doi.org/10.1146/annurev.pa.20.040180.001221
  50. Farahbakhsh, Z. T.; Beamer, D. W.; Lee, N. M.; Loh, H. J. Neurochem. 1986, 46, 953 https://doi.org/10.1111/j.1471-4159.1986.tb13062.x
  51. Mattieo, H.; Starb, H.; Hartrodt, B.; Reuthrich, H.-L.; Spieler, H.-T.; Barth, A.; Neubert, K. Peptides 1984, 5, 470
  52. Saluadoli, S.; Sarto, G. P.; Tomatis, R. Med. J. Chem. Chim. Ther. 1983, 18, 489
  53. Costa, T.; Wüster, M.; Herz, A.; Shimohigashi, Y.; Chen, H. C.; Rodbard, D. Biochem. Pharmacol. 1985, 34, 25 https://doi.org/10.1016/0006-2952(85)90095-4

Cited by

  1. Combined Role of Two Tryptophane Residues of α-Factor Pheromone vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.600
  2. Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1365
  3. -methionine amino acid vol.88, pp.6, 2016, https://doi.org/10.1111/cbdd.12821
  4. Structure-Activity Relationships of 13- and 14-Membered Cyclic Partial Retro-Inverso Pentapeptides Related to Enkephalin vol.31, pp.4, 2009, https://doi.org/10.5012/bkcs.2010.31.04.874