단 신

슈미트 반응을 이용한 10-amino-5,6,7,9-tetrahydro-1-thia-4,9diazacyclohepta $[f]$ inden-8-one 유도체의 합성

이한미 • 송양헌*
독원대학교 화학과
(2009.5.6 겁수)

Synthesis of 10-Amino-5,6,7,9-tetrahydro-1-thia-4,9diazacyclohepta $[f]$ inden-8-one Derivatives using Schmit Reaction

Han Mi Lee and Yang-Heon Song*
Departnent of Chemistry, Mohwon Unversit, Daejeon 302-729, Korea
(Received May 6, 2009)

주제어: 알츠하이머병, 아세털콜린에스터레이즈 억 제제, 슈미트반응, 싸이에노피러던 유도체
Keywords: Alzheimer's disease, Acetylcholinesterase inhibitor, Schmit reaction, Thienopyridine derivative

Alzheimer's disease (AD) is neurodegenerative disease characterized by a low concentration of acetylcholine (ACh) in the hippocampus and cortex. ${ }^{1}$ The deficiency in cholinergic neurotransmission is also believed to be one of the major causes of the decline in cognitive and mental functions associated with $\mathrm{AD} .^{-2+}$ Acetylcholinesterase (AClE) inhibitors, which inhibit the enzyme responsible for ACh hydrolysis in order to increase the level of brain ACh , have been used for years in treatment of $A D .{ }^{5}$

1a $(R=H$, tacrine $)$
1b ($\mathrm{R}=\mathrm{OH}$, velnacrine)

3

2

4

To date only tacrine (1a, the first AChE inhibitor). donepezil, rivastigmine, and galanthamine
are available for AD treatment. However. the use of AChE inlibitors is sometimes limited mainly due to serious adverse effects such as hepatotoxicity and modest benefits to AD patients. Efforts to search for more potent and selective inhibitors of AChE without side effects still remain highly' significant in AD treatment.

Recently, we have reported the synthesis of new thienopyridine derivatives $\mathbf{2}$ and $\mathbf{3}$ as potential AChE inlubitors. ${ }^{6}$ In continuation of our works for biologically active heterocyclic compounds ${ }^{7}$ we describe herein the synthesis of 10 -amino-5.6.7.9-tetrahydro-1-thia-4.9-diazacyclohepta[f] inden-8-one derivatives (4). Since it is widely recognized that thiophene is a bioisoster of benzene. our synthetic plan is based on the replacement of benzene and cyclohexane moiety in tacrine $\mathbf{1}$ by thiophene and azepanone scaffold.

The synthetic route to + is. as shown in Scheme 1. similar in many respects to the one used for the synthesis of compound 11^{66} except the starting material 5. The condensation of 3 -aminothio-phene-2-carbonitrile 5 with 5 -substituted cyclo-hexane-1.3-diones 6 in refluxing toluene in the

$\mathbf{R}=\mathbf{a}: \mathrm{H}, \mathrm{b}:$ di-Me, c: Ph, d: p-Tolyl, e: 4-C|Ph, f: 4-BrPh
Schene 1. Reagent and conditions; A: p-TsOH/toluene, reflux; $\mathrm{B}: \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CuCl} / \mathrm{THF}$, reflux; $\mathrm{C}: \mathrm{NaN}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{CHCl}_{3}$, rt : $\mathrm{D}: \mathrm{CH}(\mathrm{OEt})_{2}$, reflux.
presence of $p-\mathrm{TsOH}$. gave the corresponding enamino ketones 7. The latter ones were then cyclized with potassium carbonate and cuprous chloride in refluxing THF to produce tricyclic ketones $\mathbf{8}{ }^{77}$ The ring expansion of $\mathbf{8}$ by Schmit reaction with sodium azide in a misture of concentrated sulfuric acid and chloroform at room temperature for $5-6 \mathrm{~h}$ afforded one lactam. 6 -substituted-10-amino-5,6.7.9-tetrahydro-1-thia-4.9-diazacy clohepta [7]inden-8one 4 and 4 -substituted-1.3 +.5 -tetralydro- 9 -thia-1.2.6-triazacyclopenta[$d]$ acenaphthylene 9 with the ratio of $4: 1$ in yield ranging from 44 to 65%. Another isomeric lactam $\mathbf{1 2}$ was not formed.

The structure of + was characterized by their spectral data and chemical evidence. For instance. IR carbonyl absorption peak of ta appeared at $1670 \mathrm{~cm}^{-1}$ as carbonyl value of amide but 9 a showed no carbonyl band. The ${ }^{1} H$ NMR spectrum of $4 a$ showed NH2 and NH at ò 8.71 and 6.18 , respectively, while the broad NH signal in 9 a was shifted at lower field to $\delta 13.30$. The mass and elemental analysis data for ta and 9aalso matched the proposed stnictures and formulas. respectively (in Experimental). And. the chemical slift of C-7 methylene group. next to carbonyl in 4 a was $\hat{o} 2$. 13 . Its value is in agreement with the fact that a methylene of ta absorbs at higher field when compared to a methylene next to NH group of $\mathbf{1 2 a}$. The structure
of compound ta compared to 12a was further supported by the result that cyclization of 4 a with triethylorthoformate gave imidazo derivative 10a. whose NMR spectrum showed a sharp singlet for one proton at $\delta 9.13$ as a imine proton. ${ }^{8}$

In conclusion, we reported the synthesis of new 10-amino-5.6.7,9-tetralydro-1-thia-4,9-diazacycl ohepta[f]inden- 8 -one derivatives (4), as potential AChE inhibitors. from 8 using Schmit reaction.

EXPERIMENTAL

All products were characterized by $\mathbb{R},{ }^{1} \mathrm{H}$ NMR. MS and elemental analysis. Melting points were measured by using the capillary tubes on Büchi apparatus and are uncorrected. Each compound of the reactions was checked on thin-layer chromatography of Merck Kieselgel $60 \mathrm{~F}_{254}$ and purified by column chromatograply using Merck silica gel ($70-230$ mesh). IR spectra were recorded on the FT-IR Brucker Tensor 27. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX-300 FTNMR spectrometer $(300 \mathrm{MHz})$ with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard and chemical shifts are given in ppm ($\hat{\delta}$). Electron ionization mass spectra were recorded on a HP 59580 B spectrometer. Elemental analyses were performed on a Carlo Erba 1106 elemental analyzer.

General procedure for the preparation of 10 -amino-5,6,7,9-tetrahydro-1-thia-4,9-diazacyclohe pta[ffinden-8-one derivatives (4):

To a solution of 8 (0.01 mole) in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$. sodium azide (0.03 mole) was slowly added over 1 h . The solution was stirred for 5 h at room temperature. The reaction mixture was basified with dilute $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with CHCl_{3}. After evaporation the precipitate was filtered and recrystallized from EtOH.

10-Amino-5,6,7,9-tetrahydro-1-thia-4,9-diazac ycloheptal f linden-8-one (4a):

Yield 58% : mp $231^{\circ} \mathrm{C}$ (dec): IR (KBr): 1670 cm^{-1} : ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. 7.78 (d. $J=5.9 \mathrm{~Hz}$. 1H. thiophene $\mathrm{H}-2$), 7.24 (d. $J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) .6 .18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.78(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}-5), 2.13-2.07$ (m. $4 \mathrm{H} . \mathrm{H}-6$ and $\mathrm{H}-7$): MS: (m / z) $233\left(\mathrm{M}^{+}\right), 204$. 190 . Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$: C. 56.63 ; H. 3.14 ; N. 18.01 . Found: C, 56.50 ; H. 3.30: N. 18.22.

1,3,4,5-Tetrahydro-9-thia-1,2,6-triazacyclopen ta[d]acenaphthylene (9 a):

Yield 14% : mp $283-284^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): 013.30 (s. $1 \mathrm{H} . \mathrm{NH}$). 7.91 (d. $J=5.9 \mathrm{~Hz} .1 \mathrm{H}$. thiophene H-8). 7.59 (d. $J=5.9 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{H}-9$). $3.00-$ 2.94 (m. $4 \mathrm{H} . \mathrm{H}-3$ and $\mathrm{H}-5$). 2.19 (q. $2 \mathrm{H} . \mathrm{H}-4$) : MS: $(\mathrm{n} / \mathrm{z}) 215(\mathrm{M}), 186,160$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{~S}$: C. 61.37 ; H. 4.21 ; N. 19.52. Found: C, 61.49 ; H. 4.10: N, 19.70.

10-Amino-6,6-dimethyl-5,6,7,9-tetrahydro-1-thia-4,9-diazacycloheptalf]inden-8-one (4 b):

Yield 52% : mp $227^{\circ} \mathrm{C}$ (dec). ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): 08.77 (s. 1H.NH). 7.76 (d. $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$. thiophene H-2). 7.29 (d. $J=5.9 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{H}-3$). 6.18 (s. $2 \mathrm{H}, \mathrm{NH}_{2}$) , 2.90 (s. $2 \mathrm{H} . \mathrm{H}-5$), 2.58 (s. 2 H . $\mathrm{H}-7$). 1.00 ($\mathrm{s} .6 \mathrm{H} . \mathrm{diMe}$): MS: (m / z) $261\left(\mathrm{M}^{+}\right)$. 246. 218. 178. 135. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{1} \mathrm{~N}_{3} \mathrm{OS}$: C. 59.75 ; H. 5.78 ; N. 16.08 . Found: C, 59.90 ; H. 5.59: N, 16.20.

10-Amino-6-phenyl-5,6,7,9-tetrahydro-1-thia-4,9-diazacycloheptal f]inden-8-one (4c):

Yield 62\%: mp 196-197 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): 08.94 ($\mathrm{s}, 1 \mathrm{H} . \mathrm{NH}$), 7.81 (d. $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$. thiophene $\mathrm{H}-2$). $7.29-7.22$ (m. $6 \mathrm{H} . \mathrm{H}-3$ and phenyl).
6.27 (s. 2H. NH ${ }_{2}$). 3.65 (m. lH. H-6). 3.15 (m. 1H. H-5a). 2.98 (m. 1H. H-5b). 2.49 (m. 1H. $\mathrm{H}-7 \mathrm{a}), 2.29$ (m. 1H. H-7b): MS: (m/z) 309 (M^{+}), 284. 179. Anal. Calcd for $\mathrm{C}_{1} \because \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$: C. 66.00. H. 4.89: N, 13.58. Found: C, 65.84; H. 4.73; N. 13.70 .

10-Amino-6-p-tolyl-5,6,7,9-tetrahydro-1-thia-4,9-diazacycloheptal $f f$ inden-8-one (+d):

Yield 44\%: mp 169-171 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (DMSOd_{6}): $\delta 8.92$ (s. $1 \mathrm{H} . \mathrm{NH}$). 7.81 (d. $J=6.0 \mathrm{~Hz} .1 \mathrm{H}$. thiophene H-2), 7.29 (d. $J=5.9 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{H}-3$). 7.25 (d. 2H. phenyl H-2 and H-6). 7.09 (d. 2H. phenyl $\mathrm{H}-3^{\circ}$ and $\mathrm{H}-5^{\circ}$), 6.26 (s. $2 \mathrm{H} . \mathrm{NH}_{2}$), 3.57 (m. 1H. H-6). 3.12 (m. 1H. H-5a). 2.96 (m. 1H. H-5b). 2.50 (m. 1H. H-7a), 2.27-2.20 (m, 4H. H-7b and Me): MS: (m/z) 323 (M^{+}). 295. 280, 179, 145. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{1}: \mathrm{N}_{3} \mathrm{OS}$: C, 66.85: H. 5.30 , N. 12.99. Found: C. 66.99: H, 5.48: N, 13.19.

- p-Tolyl-1,3,4, ${ }^{5}$-tetrahydro- $9-$ thia-1,2,6-triaza cyclopentald]acenaphthylene (9d):

Yield 10% : mp 246-247 ${ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSOd_{c}): $\delta 13.60(\mathrm{~s} . \mathrm{lH}, \mathrm{NH}) .7 .95(\mathrm{~d}, J=5.9 \mathrm{~Hz}, \mathrm{IH}$. thiophene H-8). 7.34 (d, $J=5.9 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{H}-9$). 7.24 (d. 2 H . phenyl H-2 and $\mathrm{H}-6$) .7 .07 (d. 2 H. phenyl $\mathrm{H}-3^{\circ}$ and $\mathrm{H}-5^{\circ}$), 3.40 (m, 1H. H-4), 3.11-2.95 (m. $4 \mathrm{H} . \mathrm{H}-3$ and $\mathrm{H}-5$). 2.22(s. 3H. Me): MS: (m/z) $305\left(\mathrm{M}^{-}\right), 299,286$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$: C, 70.79 ; H, 4.95 ; N. 13.76. Found: C. 70.62 ; H, 4.76; N, 13.90 .

10-Amino-6-(t-chlorophenyl)-5,6,7,9-tetrahyd ro-1-thia-4,9-diazacyclohepta[f]inden-8-one (te):

Yield 65\%, mp 189-190 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (DMSO-
 thiophene $\mathrm{H}-2$). $7.48\left(\mathrm{~d} .2 \mathrm{H}\right.$. phenyl $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\circ}$). 7.31 (d. 2H. phenyl H-2 and H-6'). 7.28 (d. $J=$ $5.9 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{H}-3$). 6.35 (s. 2H. NH2). 3.67 (m. 1 H. H-6). 3.16 (m. 1H. H-5a). 2.98 (m. 1H. H-5b). 2.49 (m. 1H. H-7a), 2.28 (m. 1H. H-7b): MS: (m / z) $3+4\left(\mathrm{M}^{+}\right) .316,300.219 .180,165$. Anal. Calcd. for $\mathrm{C}_{1}: \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{OS}$: C. 59.39: H, 4.10: N , 12.22. Found: C, 59.22 : H. 4.28 ; N. 12.10 .

10-Amino-6-(+ -bromophenyl)-5,6,7,9-tetrahyd ro-1-thia-4,9-diazacyclohepta[f]inden-8-one ($\mathbf{4 f}$):

Yield 56\%, mp 252-254 ${ }^{\circ} \mathrm{C}$: ${ }^{\text {H }} \mathrm{H}$ NMR (DMSOd_{6}): 08.96 (s. $1 \mathrm{H} . \mathrm{NH}$). 7.82 (d. $J=5.9 \mathrm{~Hz} .1 \mathrm{H}$.
thiophene $\mathrm{H}-2$). 7.47 (d. 2H. phenỵl $\mathrm{H}-3^{\circ}$ and $\mathrm{H}-5^{\prime}$). 7.31 (d. 2 H . phenyll $\mathrm{H}-2^{\circ}$ and $\mathrm{H}-6^{\circ}$). 7.27 (d. $J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3) .6 .30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.66(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-6), 3.15$ (m, 1H, H-5a). 2.96 (m. 1H, H-5b). 2.49 (m. 1H, H-7a). 2.26 (m. 1H, H-7b); MS: (m/z) $388\left(\mathrm{M}^{+}\right) .360,218.190,179$. Anal. Calcd. for $\mathrm{C}_{1}: \mathrm{H}_{14} \mathrm{BrN}_{3} \mathrm{OS}: \mathrm{C}, 52.59 ; \mathrm{H}, 3.63: \mathrm{N}, 10.82$. Found: C. 52.75 : H, 3.48: N. 11.01.

RERFERENCES

1. (a) Blennow, K.; deLeon, M. T.; Zetterberg, H. Lancet 2006, 368, 387. (b) Musial, A.; Bajda, M.; Malwska, B. Cum: Med. Chem. 2007, 14, 2654.
2. Bartus, R. T.: Dean III, R. L.: Beer, B.; Lippa, A. S. Science 1982, 217, 408.
3. Giacobini, E.: Becker, R. R. Hizheimer's Disease:

From Molectlar Biology to Therapy, Birkhauser, Boston, 1997.
4. Selkoe, D. I. Name 1999, 399, A23.
5. (a) Musial, A.; Bajda, M.; Malawsha, B. Cum Med. Chem. 2007, 14, 2654. (b) Marco, J. L.; Carreiras, M. C. Mini Rew. Hed. Chem. 2003, 3, 518.
6. (a) Song, Y.-H.; Seo, J. J. Heterocycl. Chem., 2007, 4., 1439. (b) To, B. S.; Lee, H.; Song, Y.-H. Heterocycl. Commum. 2009, in press.
7. (a) Song, Y.-H. Heterocvel. Conmmon. 2007, 13, 33. (b) Jo, B. S.; Son, H. Y.; Song, Y.-H. Heterocycles 2008, 75, 3091 . (c) Kim, K.; Song, Y.-H. Heterocycl. Commm 2008, 14,405 (d) Song, Y.-H.: Io, B. S. Bull. Kor. Chem. Soc. 2009, 30, 969. (e) To, B. S:; Song, Y.-H. Sin. Commum. 2009, in press. (f) Song, Y.-H.' Jo, B. S. J. Heterocycl. Chem. 2009, in press.
8. Gatta, F.; Pomponi, M.: Marta, M. J. Heterocucl. Chem. 1991, 28, 1301.

