DOI QR코드

DOI QR Code

Synthesis and Characterization of Poly(arylene-ethynylene)s with Ferrocene Unit by Reaction of 1,1'-Bis(ethynyldimethylsilyl)ferrocene and Aromatic Dihalides

  • Lee, In-Sook (Faculty of Liberal Education, Kyungpook National University) ;
  • Lee, Chong-Gu (Department of Chemistry, Kyungpook National University) ;
  • Kwak, Young-Woo (Department of Chemistry, Kyungpook National University) ;
  • Gal, Yeong-Soon (Polymer Chemistry Laboratory, College of Engineering, Kyungil University)
  • Published : 2009.02.20

Abstract

New poly(arylene-ethynylene)s with silicon-containing ferrocene moiety in the polymer main chain were synthesized via the C-C bond forming reactions of 1,1´-bis(ethynyldimethylsilyl)ferrocene and various aromatic dihalides in high yields. The aromatic dihalides include 1,4-dibromobenzene, 4,4´-dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4-nitroaniline. The polymer structures and properties were characterized by such instrumental methods as NMR $(^1H-,\;^{13}C-,\;and\;^{29}Si-)$, IR, UV-visible spectroscopies and TGA/DSC. The spectral data indicated that the present polymers have the regular alternating structure of 1,1´-bis(ethynyldimethylsilyl)ferrocenylene and arylene units. The resulting polymers were completely soluble in such organic solvents as methylene chloride, chloroform, benzene, chlorobenzene, and THF. The thermal behaviors of the resulting polymers were examined.

Keywords

References

  1. Rutledge, T. F., Ed.; Acetylenic Compounds: Preparation and Substitution Reactions; Reinhold Book Corporation: New York, 1968
  2. Chauser, M. G.; Rodionov, Yu. M.; Misin, V. M.; Cherkashin, M. I. Russ. Chem. Rev. 1976, 45, 348 https://doi.org/10.1070/RC1976v045n04ABEH002642
  3. Bu'Lock, J. D. Progress in Organic Chemistry 1964, 6, 86
  4. Jones, E. R. H.; Skattebol, L.; Whiting, M. C. J. Chem. Soc. 1958, 1054 https://doi.org/10.1039/jr9580001054
  5. Eglinton, G.; Galbraith, A. R. J. Chem. Soc. 1959, 889 https://doi.org/10.1039/jr9590000889
  6. Kim, J. H.; Park, Y. T. Bull. Korean Chem. Soc. 2006, 27, 869 https://doi.org/10.5012/bkcs.2006.27.6.869
  7. Greenham, S. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628. https://doi.org/10.1038/365628a0
  8. Jin, S. H.; Kim, M. Y.; Kim, J. Y.; Lee, K.; Gal, Y. S. J. Am. Chem Soc. 2004, 126, 2474 https://doi.org/10.1021/ja036955+
  9. Choi, S. K.; Gal, Y. S.; Jin, S. H.; Kim, H. K. Chem. Rev. 2000, 100, 1645 https://doi.org/10.1021/cr960080i
  10. Lam, J. K. Y.; Tang, B. Z. Acc. Chem. Res. 2005, 38, 745 https://doi.org/10.1021/ar040012f
  11. Masuda, T. J. Polym. Sci.: Part A: Polym. Chem. 2007, 45, 165 https://doi.org/10.1002/pola.21782
  12. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953 https://doi.org/10.1021/cr050143+
  13. Lo, S. C.; Burn, P. L. Chem. Rev. 2007, 107, 1097 https://doi.org/10.1021/cr050136l
  14. Thomas III, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339 https://doi.org/10.1021/cr0501339
  15. Gal, Y. S.; Lee, I. S.; Chang, E. H.; Jeong, Y. C.; Kwak, Y. W. Bull. Korean Chem. Soc. 2007, 28, 1305 https://doi.org/10.5012/bkcs.2007.28.8.1305
  16. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913 https://doi.org/10.1063/1.98799
  17. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  18. Burroughes, J. H.; Bradey, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Triend, R. H.; Burns, P. L.; Holmes, A. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  19. Jeon, H. S.; Lee, S. K.; Lee, E. J.; Park, S. M.; Kim, S. C.; Jin, S. H.; Gal, Y. S.; Lee, J. W.; Im, C. Macromolecules 2007, 40, 4794 https://doi.org/10.1021/ma070398k
  20. Yang, J. S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 11864 https://doi.org/10.1021/ja982293q
  21. Montali, A.; Bastiaansen, G.; Smith, P.; Weder, C. Nature 1998, 392, 261 https://doi.org/10.1038/32616
  22. Bunz, U. H. F. Chem. Rev. 2000, 100, 1605 https://doi.org/10.1021/cr990257j
  23. Dieck, H. A.; Heck, R. F. J. Organomet. Chem. 1975, 93, 259 https://doi.org/10.1016/S0022-328X(00)94049-X
  24. Cassar, I. J. Organomet. Chem. 1975, 93, 253 https://doi.org/10.1016/S0022-328X(00)94048-8
  25. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467 https://doi.org/10.1016/S0040-4039(00)91094-3
  26. Corriu, R. J. P.; Douglas, W. E.; Yang, Z.-X. J. Polym. Sci. Pt.CPoly. Lett. 1990, 28, 431 https://doi.org/10.1002/pol.1990.140281306
  27. Iwahara, T.; Hayase, S.; West, R. Macromolecules 1990, 23, 1298 https://doi.org/10.1021/ma00207a012
  28. Ishikawa, M.; Horio, T.; Hatano, T.; Kunai, A. Organometallics 1993, 12, 2078 https://doi.org/10.1021/om00030a018
  29. Komaguchi, K.; Shiotani, M.; Ishikawa, M. Macromolecules 1998, 31, 985
  30. Ohshita, J.; Yoshimoto, K.; Tada, Y.; Harima, Y.; Kunai, A.; Kunugi, Y.; Yamashita, K. J. Organomet. Chem.. 2003, 678, 33 https://doi.org/10.1016/S0022-328X(03)00394-2
  31. Kim, H. K.; Ryu, M. K.; Lee, S. M. Macromolecules 1997, 30, 1236 https://doi.org/10.1021/ma961295x
  32. Kim, K. D.; Park, J. S.; Kim, H. K.; Lee, T. B.; No, K. T. Macromolecules 1998, 31, 7267 https://doi.org/10.1021/ma980349v
  33. Kwak, Y. W.; Lee, K. K.; Cha, S. H.; Lee, S. K.; Lee, I. S.; Park, Y. T.; Lee, J.; Yoh, S. D.; Kim, W. S. Bull. Korean Chem. Soc. 2003, 24, 479 https://doi.org/10.5012/bkcs.2003.24.4.479
  34. Lee, S. G.; Kwak, Y. W.; Park, J. W.; Jin, S. H.; Gal, Y. S. J. Nonlinear Opt. Phys. & Mater. 2005, 14, 573 https://doi.org/10.1142/S0218863505003031
  35. Corriu, R. J. P.; Devylder, N.; Guérin, C.; Henner, B.; Jean, A. Organometallics 1994, 13, 3194 https://doi.org/10.1021/om00020a036
  36. Jain, R.; Choi, H.; Lalancette, R. A.; Sheridan, J. B. Organometallics 2005, 24, 1468 https://doi.org/10.1021/om049167h
  37. Kan, P. T.; Lenk, C. T.; Schaaf, R. L. J. Org. Chem. 1961, 26, 4038 https://doi.org/10.1021/jo01068a095
  38. Corriu, R. J. P.; Douglas, W. E.; Yang, Z.-X. J. Organomet. Chem. 1993, 456, 35 https://doi.org/10.1016/0022-328X(93)83313-K
  39. Corriu, R. J. P.; Douglas, W. E.; Yang, Z.-X.; Garnier, F.; Yassar, A. J. Organomet. Chem. 1991, 417, C50 https://doi.org/10.1016/0022-328X(91)80205-X
  40. Corriu, R. J. P.; Douglas, W. E.; Yang, Z. X.; Karakus, Y.; Cross, G. H.; Bloor, D. J. Organomet. Chem. 1993, 455, 69 https://doi.org/10.1016/0022-328X(93)80382-L
  41. Kunai, A.; Toyoda, E.; Horata, K.; Ishikawa, M. Organometallics 1995, 14, 714 https://doi.org/10.1021/om00002a020
  42. Manhart, S. A.; Adachi, A.; Sakamaki, K.; Okita, K.; Ohshita, J.; Ohno, T.; Hamaguchi, T.; Kunai, A.; Kido, J. J. Organomet. Chem. 1999, 592, 52 https://doi.org/10.1016/S0022-328X(99)00481-7
  43. Lee, S. G.; Kwak, Y. W.; Koo, B. K.; Jin, S. H.; Gal, Y. S. Mol. Cryst. Liq. Cryst. 2006, 458, 237 https://doi.org/10.1080/15421400600932421

Cited by

  1. Synthesis and Structures of New Silaanthracenophanes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.255
  2. Thermal stability of cocured blends of vinyl trimethoxysilane and aryl acetylene resins with different posttreatments vol.131, pp.8, 2013, https://doi.org/10.1002/app.40158
  3. Synthesis and Properties of Polymers with an Organosilicon–Acetylene Backbone vol.28, pp.5, 2018, https://doi.org/10.1007/s10904-018-0854-3
  4. Synthesis and Properties of Arylacetylene Resins with Siloxane Units vol.31, pp.4, 2009, https://doi.org/10.5012/bkcs.2010.31.04.976
  5. A New Poly(aryleneethynylene) from the Cross-Coupling Condensation of 4-[(tert-Butyldimethylsiloxy)methyl]-1,6-heptadiyne andp-Diiodobenzene: Synthesis and Properties vol.618, pp.1, 2009, https://doi.org/10.1080/15421406.2015.1075839