DOI QR코드

DOI QR Code

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen (Department of Chemistry and Carbohydrate Bioproduct Research Center, Sejong University) ;
  • Kim, Jong-Chul (Department of Chemistry and Carbohydrate Bioproduct Research Center, Sejong University)
  • Published : 2009.09.20

Abstract

Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Keywords

References

  1. Lamari, F. N.; Kuhn, R.; Karamanos, N. K. J. Chromatogr. B 2003, 793, 15-36 https://doi.org/10.1016/S1570-0232(03)00362-3
  2. Iozzo, R. V. Crit. Rev. Biochem. Mol. Biol. 1997, 32, 141-174 https://doi.org/10.3109/10409239709108551
  3. Bernfield, M.; Gotte, M.; Park, P. W.; Reizes, O.; Fitzgerald, M. L.; Lincecum, J.; Zako, M. Annu. Rev. Biochem. 1999, 68, 729-778 https://doi.org/10.1146/annurev.biochem.68.1.729
  4. Schwartz, N. Front. Biosci. 2000, 5, D649-655
  5. Sugahara, K.; Kitagawa, H. Curr. Opin. Struct. Biol. 2000, 10, 518-527 https://doi.org/10.1016/S0959-440X(00)00125-1
  6. Helenius, A.; Aebi, M. Science 2001, 291, 2364-2369 https://doi.org/10.1126/science.291.5512.2364
  7. Wells, L.; Vosseller, K.; Hart, G. W. Science 2001, 291, 2376-2378 https://doi.org/10.1126/science.1058714
  8. Zaia, J. Mass Spectrom. Rev. 2004, 23, 161-227 https://doi.org/10.1002/mas.10073
  9. Harvey, D. J. Mass Spectrom. Rev. 1999, 18, 349-450 https://doi.org/10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H
  10. Naven, T. J. P.; Harvey, D. J. Rapid Commun. Mass Spectrom. 1996, 10, 829-834 https://doi.org/10.1002/(SICI)1097-0231(199605)10:7<829::AID-RCM572>3.0.CO;2-Y
  11. Choi, S.-S.; Ha, S.-H. Bull. Kor. Chem. Soc. 2006, 27, 1243-1245 https://doi.org/10.5012/bkcs.2006.27.8.1243
  12. Harvey, D. J.; Küster, B.; Naven, T. J. P. Glycoconjugate J. 1998, 15, 333-338 https://doi.org/10.1023/A:1006913616252
  13. Tseng, K.; Hedrick, J. L.; Lebrilla, C. B. Anal. Chem. 1999, 71, 3747-3754 https://doi.org/10.1021/ac990095r
  14. Price, N. P. J. Anal. Chem. 2006, 78, 5302-5308 https://doi.org/10.1021/ac052168e
  15. Viseux, N.; de Hiffmann, E.; Domon, B. Anal. Chem. 1998, 70, 4951-4959 https://doi.org/10.1021/ac980443+
  16. Weiskopf, A. S.; Vouros, P.; Harvey, D. J. Anal. Chem. 1998, 70, 4441-4447 https://doi.org/10.1021/ac980289r
  17. Li, D. T.; Her, G. R. J. Mass Spectrom. 1998, 33, 644-652 https://doi.org/10.1002/(SICI)1096-9888(199807)33:7<644::AID-JMS667>3.0.CO;2-F
  18. Garozzo, D.; Impallomeni, G.; Spina, E.; Green, B. N.; Hutton, T. Carbohydr. Res. 1991, 221, 253-257 https://doi.org/10.1016/0008-6215(91)80061-Q
  19. Mulroney, B.; Traeger, J. C.; Stone, B. A. J. Mass Spectrom. 1995, 30, 1277-1283 https://doi.org/10.1002/jms.1190300911
  20. Yuan, J.; Hashii, N.; Kawasaki, N.; Itoh, S.; Kawanishi, T.; Hayakawa, T. J. Chromatogr. A 2005, 1067, 145-152 https://doi.org/10.1016/j.chroma.2004.11.070
  21. Wan, E. C. H.; Yu, J. Z. J. Chromatogr. A 2006, 1107, 175-181 https://doi.org/10.1016/j.chroma.2005.12.062
  22. Cheng, H. L.; Her, G. R. J. Am. Soc. Mass Spectrom. 2002, 13, 1322-1330 https://doi.org/10.1016/S1044-0305(02)00528-7
  23. Zhu, X.; Sato, T. Rapid Commun. Mass Spectrom. 2007, 21, 191-198 https://doi.org/10.1002/rcm.2825
  24. Liang, H. R.; Takagaki, T.; Foltz, R. L.; Bennett, P. Rapid Commun. Mass Spectrom. 2005, 19, 2284-2294 https://doi.org/10.1002/rcm.2055
  25. Kakola, J.; Alen, R.; Pakkanen, H.; Matilainen, R.; Lahti, K. J. Chromatogr. A 2007, 1139, 263-270 https://doi.org/10.1016/j.chroma.2006.11.033
  26. Lim, J. Y.; Kumar, A. P.; Kim, C.; Ahn, C.; Yoo, Y. J.; Lee, Y. I. Bull. Kor. Chem. Soc. 2009, 30, 397-401 https://doi.org/10.5012/bkcs.2009.30.2.397
  27. Lee, I.; Ahn, S.; Kim, B.; Hwang, E.; Seong, Y. Bull. Kor. Chem. Soc. 2008, 29, 2125-2128 https://doi.org/10.5012/bkcs.2008.29.11.2125
  28. Cherlet, M.; de Baere, S.; Croubels, S.; de Backer, P. Anal. Chim. Acta 2005, 529, 361-369 https://doi.org/10.1016/j.aca.2004.07.014
  29. Harvey, D. J. J. Am. Soc. Mass Spectrom. 2000, 11, 900-915 https://doi.org/10.1016/S1044-0305(00)00156-2
  30. Harvey, D. J. J. Mass Spectrom. 2000, 35, 1178-1190 https://doi.org/10.1002/1096-9888(200010)35:10<1178::AID-JMS46>3.0.CO;2-F
  31. Reis, A.; Coimbra, M. A.; Domingues, P.; Ferrer-Correia, A. J.; Domingues, M. R. M. Carb. Polym. 2004, 55, 401-409 https://doi.org/10.1016/j.carbpol.2003.11.001
  32. Rogatsky, E.; Jayatillake, H.; Goswami, G.; Tomuta, V.; Stein, D. J. Am. Soc. Mass Spectrom. 2005, 16, 1805-1811 https://doi.org/10.1016/j.jasms.2005.07.017
  33. Carrott, M. C.; Jones, D. C.; Davidson, G. Analyst 1998, 123, 1827-1833 https://doi.org/10.1039/a803922d
  34. Alonso, M. C.; Barcelo, D. Anal. Chim. Acta 1999, 400, 211-231 https://doi.org/10.1016/S0003-2670(99)00705-9
  35. Choi, S.-S.; Song, M. J. Bull. Kor. Chem. Soc. 2008, 29, 1847-1849 https://doi.org/10.5012/bkcs.2008.29.9.1847
  36. Liu, Y.; Urgaonkar, S.; Verkade, J. G.; Armstrong, D. W. J. Chromatogr. A 2005, 1079, 146-152 https://doi.org/10.1016/j.chroma.2005.03.011
  37. Harris, D. C. Quantitative Chemical Analysis, seventh ed.; Freeman: New York, 2007
  38. Cerda, B. A.; Wesdemiotis, C. Int. J. Mass Spectrom. 1999, 189, 189-204 https://doi.org/10.1016/S1387-3806(99)00085-8
  39. Davis, H.; Skrzypek, W.; Khan, A. J. Polym. Sci. A 1994, 32, 2267-2274 https://doi.org/10.1002/pola.1994.080321208
  40. Cancilla, M. T.; Penn, S. G.; Carroll, J. A.; Lebrilla, C. B. J. Am. Chem. Soc. 1996, 118, 6736-6745 https://doi.org/10.1021/ja9603766

Cited by

  1. Current literature in mass spectrometry vol.45, pp.3, 2010, https://doi.org/10.1002/jms.1647
  2. Analysis of Mixture of Maltooligoses Using MALDI-TOFMS: Influence of Cationizing Agent Types vol.30, pp.11, 2009, https://doi.org/10.5012/bkcs.2009.30.11.2806
  3. Comparison of Cocaine Detections in Corona Discharge Ionization-Ion Mobility Spectrometry and in Atmospheric Pressure Chemical Ionization-Mass Spectrometry vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2383