DOI QR코드

DOI QR Code

Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells

  • Han, Chi-Hwan (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Lee, Hak-Soo (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Lee, Kyung-Won (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Han, Sang-Do (Photovoltaic Research Center, Korea Institute of Energy Research) ;
  • Singh, Ishwar (Department of Chemistry, Maharshi Dayanand University)
  • Published : 2009.01.20

Abstract

$TiO_2$ doped with $Er^{3+\;and\;Yb^{3+}$ was used for fabricating a scattering layer and a nano-crystalline $TiO_2$ electrode layer to be used in dye-sensitized solar cells. The material was prepared using a new sol-gel combustion hybrid method with acetylene black as fuel. The $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide powder synthesized at 700oC had embossed structure morphology with a size between 27 to 54 nm that agglomerated to produce micron size particles, as observed by the scanning electron micrographs. The XRD patterns showed that the $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide had an amorphous structure, while using the same method without doping $Er^{3+}\;or\;Yb^{3+},\;TiO_2$ was obtained in the crystallite form with thea dominance of rutile phase. Fabricating a bilayer structure consisting of nano-crystalline $TiO_2$ and the synthesized $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide showed better scattering property, with an overall increase of 15.6% in efficiency of the solar cell with respect to a single nano-crystalline $TiO_2$ layer.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  2. Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Liska, P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M.; Hinsch, A.; Hore, S.; Wurfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T.; Walter, J.; Skupien, K.; Tulloch, G. E. Prog. Photovolt.: Res. Appl. 2007, 15, 1 https://doi.org/10.1002/pip.707
  3. Han, C.-H.; Lee, H.-S.; Han, S.-D. Bull. Korean Chem. Soc. 2008, 29, 1495 https://doi.org/10.5012/bkcs.2008.29.8.1495
  4. Ito, S.; Zakeerudin, S. M.; Baker, R. H.; Liska, P.; Charvet, P.; Comte, P.; Nazeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Gratzel, M. Adv. Mater. 2006, 18, 1202 https://doi.org/10.1002/adma.200502540
  5. Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Sol. Energy Mater. Sol. Cell 2006, 90, 1176 https://doi.org/10.1016/j.solmat.2005.07.002
  6. Vargas, W. E. J. Appl. Phys. 2000, 88, 4079 https://doi.org/10.1063/1.1289230
  7. Cheng, P.; Deng, C.; Dai, X.; Li, B.; Liu, D.; Xu, J. J. Photochem. Photobiol. A: Chem. 2008, 195, 144 https://doi.org/10.1016/j.jphotochem.2007.09.016
  8. Grinis, L.; Dor, S.; Ofir, A.; Zaban, A. J. Photochem. Photobiol. A: Chem. 2008, 198, 52 https://doi.org/10.1016/j.jphotochem.2008.02.015
  9. Kang, S. H.; Kim, J.-Y.; Sung, Y.-E. Electrochim. Acta 2007, 52, 5242 https://doi.org/10.1016/j.electacta.2007.02.038
  10. Kang, S. H.; Kim, J.-Y.; Kim, Y.-K.; Sung, Y.-E. J. Photochem. Photobiol. A: Chem. 2007, 186, 234 https://doi.org/10.1016/j.jphotochem.2006.08.012
  11. Menzies, D.; Dai, Q.; Cheng, Y.-B.; Simon, G. P.; Spiccia, L. Mater. Lett. 2005, 59, 1893 https://doi.org/10.1016/j.matlet.2005.02.048
  12. Kim, S.-S.; Yum, J.-H.; Sung, Y.-E. J. Photochem. Photobiol. A: Chem. 2005, 171, 269 https://doi.org/10.1016/j.jphotochem.2004.10.019
  13. Liu, Z.; Pan, K.; Liu, M.; Wang, M.; Lu, Q.; Li, J.; Bai, Y.; Li, T. Electrochim. Acta 2005, 50, 2583 https://doi.org/10.1016/j.electacta.2004.11.003
  14. Kusama, H.; Sugihara, H. J. Photochem. Photobiol. A: Chem. 2007, 187, 233 https://doi.org/10.1016/j.jphotochem.2006.10.022
  15. Kusama, H.; Sugihara, H. J. Photochem. Photobiol. A: Chem. 2006, 181, 268 https://doi.org/10.1016/j.jphotochem.2005.12.008
  16. Shang, Q.; Yu, H.; Kong, X.; Wang, H.; Wang, X.; Sun, Y.; Zhang, Y.; Zeng, Q. J. Lumin. 2008, 128, 1211 https://doi.org/10.1016/j.jlumin.2007.11.097
  17. Shannon, R. D. Ecta Crysta. 1976, A32, 751
  18. Zhang, M.; Lin, G.; Dong, C.; Wen, L. Surf. Coating Tech. 2007, 201, 7252 https://doi.org/10.1016/j.surfcoat.2007.01.043

Cited by

  1. Nanoplatelets vol.3, pp.9, 2011, https://doi.org/10.1021/am200537e
  2. The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells vol.2012, pp.1687-529X, 2012, https://doi.org/10.1155/2012/927407
  3. Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region vol.22, pp.33, 2012, https://doi.org/10.1039/c2jm16127c
  4. Photoanode in Dye-Sensitized Solar Cells vol.23, pp.47, 2013, https://doi.org/10.1002/adfm.201301158
  5. Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells vol.3, pp.6, 2013, https://doi.org/10.1002/aenm.201200933
  6. Crystals via Annealing vol.5, pp.22, 2013, https://doi.org/10.1021/am403100t
  7. Doping on Photoelectrical Performance of Dye-Sensitized Solar Cells pp.00027820, 2013, https://doi.org/10.1111/jace.12446
  8. An Easy-Made, Economical and Efficient Carbon-Doped Amorphous TiO2 Photocatalyst Obtained by Microwave Assisted Synthesis for the Degradation of Rhodamine B vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121447
  9. Photonic Band Gap and Bactericide Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO2 vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071677
  10. Photovoltaics literature survey (No. 70) vol.17, pp.4, 2009, https://doi.org/10.1002/pip.904
  11. Near‐Infrared Sunlight Harvesting in Dye‐Sensitized Solar Cells Via the Insertion of an Upconverter‐TiO2 Nanocomposite Layer vol.22, pp.39, 2009, https://doi.org/10.1002/adma.201001816
  12. Effect of Ionic Liquids with Different Cations in I-/I3- Redox Electrolyte on the Performance of Dye-sensitized Solar Cells vol.32, pp.6, 2009, https://doi.org/10.5012/bkcs.2011.32.6.2058
  13. Efficiency enhancement of dye-sensitized solar cells with addition of additives (single/binary) to ionic liquid electrolyte vol.35, pp.6, 2009, https://doi.org/10.1007/s12034-012-0390-7
  14. Er3+–Yb3+ co-doped TiO2 nanoparticles embedded in amorphous matrix with strong up-conversion emissions vol.536, pp.None, 2012, https://doi.org/10.1016/j.jallcom.2012.04.043
  15. Efficiency enhancement in P3HT-based polymer solar cells with a NaYF4:2% Er3+, 18% Yb3+ up-converter vol.1, pp.37, 2009, https://doi.org/10.1039/c3tc30490f
  16. Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2 vol.25, pp.47, 2009, https://doi.org/10.1088/0953-8984/25/47/475501
  17. Synthesis Dye Sensitized Solar Cells from Red Sandal Wood, Mangosteen and Lac vol.52, pp.None, 2014, https://doi.org/10.1016/j.egypro.2014.07.111
  18. Increased efficiency of dye-sensitized solar cells by addition of rare earth oxide microparticles into a titania acceptor vol.211, pp.None, 2009, https://doi.org/10.1016/j.electacta.2016.06.097
  19. La/Ce-codoped Bi 2 O 3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye vol.60, pp.None, 2009, https://doi.org/10.1016/j.jes.2016.09.022
  20. Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dye‐Sensitized and Perovskite Solar Cells: A Review vol.20, pp.2, 2009, https://doi.org/10.1002/tcr.201900008
  21. A review on spectral converting nanomaterials as a photoanode layer in dye‐sensitized solar cells with implementation in energy storage devices vol.2, pp.2, 2009, https://doi.org/10.1002/est2.120