DOI QR코드

DOI QR Code

Fillers for Solid-State Polymer Electrolytes: Highlight

  • Jung, Srun (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Kim, Dae-Won (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Lee, Sang-Deuk (Division of Energy and Environment, Korea Institute of Science and Technology) ;
  • Cheong, Minserk Cheong (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Nguyen, Dinh Quan (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University) ;
  • Cho, Byung-Won (Division of Energy and Environment, Korea Institute of Science and Technology) ;
  • Kim, Hoon-Sik (Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University)
  • Published : 2009.10.20

Abstract

The current solid polymer electrolytes suffer from poor conductivity, low mechanical and electrochemical stability toward the lithium electrodes. To improve the performance of solid polymer electrolytes, the addition of nanoparticle fillers to the polymer electrolyte is being extensively investigated. In this paper, a brief review on the state of art of solid fillers for lithium battery electrolytes is presented.

Keywords

References

  1. Gray F. M. Solid Polymer Electrolytes Fundamental and Technological Applications; VCH: London, New York, 1991
  2. Stephan, A. M.; Nahm, K. S. Polymer 2006, 47, 5952. https://doi.org/10.1016/j.polymer.2006.05.069
  3. Persi, L.; Croce, F.; Scrosati, B.; Plichta, E.; Hendrickson, M. A. J. Electrochem. Soc. 2002, 149, A212. https://doi.org/10.1149/1.1433833
  4. Appetecchi, G. B.; Croce, F.; Dautzenberg, G.; Mastragostino, M.; Ronci, F.; Scrosati, B.; Soavi, F.; Zaneli, A.; Alessandrini, F.; Prosini, P. P. J. Electrochem. Soc. 1998, 145, 4126. https://doi.org/10.1149/1.1838925
  5. Appetecchi, G. B.; Romagnoli, P.; Scrosati, B. Electrochem. Commun. 2001, 3, 281. https://doi.org/10.1016/S1388-2481(01)00137-0
  6. Murata, K.; Izuchi, S.; Yoshihisa, Y. Electrochimica Acta 2000, 45, 1501. https://doi.org/10.1016/S0013-4686(99)00365-5
  7. 7. Li, Z. H.; Zhanga, H. P.; Zhanga, P.; Wua, Y. P.; Zhou X. D. J. Power Sources 2008, 184, 562. https://doi.org/10.1016/j.jpowsour.2008.02.068
  8. Raghavana, P.; Choi J.; Ahn, J.; Chauhana, G. C. G. S.; Ahn, H.; Nah, C. J. Power Sources 2008, 184, 437. https://doi.org/10.1016/j.jpowsour.2008.03.027
  9. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Nature (London) 2001, 412, 520. https://doi.org/10.1038/35087538
  10. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B 1999, 103, 10632. https://doi.org/10.1021/jp992307u
  11. Chung, S. H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S. G.; Scrosati, B.; Plichta, E. J. Power Sources 2001, 97/98, 644. https://doi.org/10.1016/S0378-7753(01)00748-0
  12. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature (London) 1998, 394, 456. https://doi.org/10.1038/28818
  13. Jiang, G.; Maeda, S.; Yang, H.; Saito, Y.; Tanase, S.; Sakai, T. J. Power Sources 2005, 141, 143. https://doi.org/10.1016/j.jpowsour.2004.09.004
  14. Croce, F.; Persi, L.; Ronci, F.; Scrosati, B. Solid State Ionics 2000, 135, 47. https://doi.org/10.1016/S0167-2738(00)00329-5
  15. Scrosati, B.; Croce, F.; Panero, S. J. Power Sources 2001, 100, 93. https://doi.org/10.1016/S0378-7753(01)00886-2
  16. Wang, G. X.; Yang, L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. J. Nanoscience and Nanotechnology 2005, 5, 1135. https://doi.org/10.1166/jnn.2005.165
  17. Rajendran, S.; Uma, T. Ionics 2000, 6, 288. https://doi.org/10.1007/BF02374079
  18. D'Epifanio, A.; Serraino Fiory, F.; Licoccia, S.; Traversa, E.; Scrosati, B.; Croce, F. J. Appl. Electrochem. 2004, 34, 403. https://doi.org/10.1023/B:JACH.0000016623.42147.68
  19. Weston, J. E.; Steele, C. H. Solid State Ionics 1982, 7, 75. https://doi.org/10.1016/0167-2738(82)90072-8
  20. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B 1999, 103, 10632. https://doi.org/10.1021/jp992307u
  21. Kumar, B.; Scanlon, L. G. Solid State Ionics 1999, 124, 239. https://doi.org/10.1016/S0167-2738(99)00148-4
  22. Strauss, E.; Golodnitsky, D.; Ardel, G.; Peled, E. Electrochim. Acta 1998, 43, 1315. https://doi.org/10.1016/S0013-4686(97)10036-6
  23. Xie, J.; Duan, R. G.; Han, Y.; Kerr, J. B. Solid State Ionics 2004, 175, 755. https://doi.org/10.1016/j.ssi.2003.10.021
  24. Lin, C. W.; Hung, C. L.; Venkateswarlu, M.; Hwang, B. J. J. Power Sources 2005, 146, 397. https://doi.org/10.1016/j.jpowsour.2005.03.028
  25. Dissanayake, M. A. K. L. Ionics 2004, 10, 221. https://doi.org/10.1007/BF02382820
  26. Krawiec, W.; Scanlon, L. G.; Fellner, J. P.; Vaia, R. A.; Vasudevan, S.; Giannelis, E. P. J. Power Sources 1995, 54, 310. https://doi.org/10.1016/0378-7753(94)02090-P
  27. Shin, J. H.; Kim, K. W.; Ahn, H. J.; Ahn, J. H. Mater. Sci. Eng. B 2002, B95, 148.
  28. Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R. J. Am. Chem. Soc. 1984, 106, 6854. https://doi.org/10.1021/ja00334a071
  29. Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Liao, C. W.; Chen, T. L. Solid State Ionics 2003, 156, 383. https://doi.org/10.1016/S0167-2738(02)00683-5
  30. Wang, Z.; Huang, X.; Chen, L. Electrochem. and Solid-State Lett. 2003, 6, E40. https://doi.org/10.1149/1.1615352
  31. Singh, Th. J.; Bhat, S. V. J. Power Sources 2004, 129, 280. https://doi.org/10.1016/j.jpowsour.2003.11.025
  32. Chen-Yang, Y. W.; Chen, S. Y.; Yuan, C. Y.; Tsai, C. H.; Yan, D. P. Macromolecules 2005, 38, 2710. https://doi.org/10.1021/ma049139a
  33. Park, J. W.; Jeong, E. D.; Won, M.; Shim, Y. J. Power Sources 2006, 160, 674. https://doi.org/10.1016/j.jpowsour.2006.01.029
  34. Xiong, H.; Wang, Z.; Xie, D.; Cheng, L.; Xia, Y. J. Mater. Chem. 2006, 16, 1345. https://doi.org/10.1039/b514346b
  35. Walls, H. J.; Zhou, J.; Yerian, J. A.; Fedkiw, P. S.; Khan, S. A.; Stowe, M. K.; Baker, G. L. J. Power Sources 2000, 89, 156. https://doi.org/10.1016/S0378-7753(00)00424-9
  36. Matsuo, Y.; Kuwano, J. Solid State Ionics 1995, 79, 295. https://doi.org/10.1016/0167-2738(95)00077-J
  37. Capiglia, C.; Mustarelli, P.; Quartarone, E.; Tomasi, C.; Magistris, A. Solid State Ionics 1999, 118, 73 https://doi.org/10.1016/S0167-2738(98)00457-3
  38. Lee, B.; Choi, N.; Park, J. Polym. Bull. 2002, 49, 63. https://doi.org/10.1007/s00289-002-0074-3
  39. Jiang, G.; Maeda, S.; Saito, Y.; Tanase, S.; Sakai, T. J. Electrochem. Soc. 2005, 152, A767. https://doi.org/10.1149/1.1865892
  40. Liu, Y.; Lee, J. Y.; Hong, L. J. Power Sources 2002, 109, 507. https://doi.org/10.1016/S0378-7753(02)00167-2
  41. Lauter, U.; Meyer, W. H.; Wegner, G. Macromolecules 1997, 30, 2092. https://doi.org/10.1021/ma961098y
  42. Zhang, S.; Lee, Jim Y.; Hong, L. J. Power Sources 2004, 134, 95. https://doi.org/10.1016/j.jpowsour.2004.02.017
  43. 43. Ji, K.; Moon, H.; Kim, J.; Park, J. J. Power Sources 2003, 117, 124. https://doi.org/10.1016/S0378-7753(03)00159-9
  44. Xi, J.; Qiu, X.; Ma, X.; Cui, M.; Yang, J.; Tang, X.; Zhu, W.; Chen, L. Solid State Ionics 2005, 176, 1249. https://doi.org/10.1016/j.ssi.2005.02.016
  45. Xi, J.; Bai, Y.; Qiu, X.; Zhu, W.; Chen, L.; Tang, X. New J. Chem. 2005, 29, 1454. https://doi.org/10.1039/b505332c
  46. Xi, J; Tang, X. Electrochim. Acta 2006, 51, 4765. https://doi.org/10.1016/j.electacta.2006.01.016
  47. Xi, J.; Qiu, X.; Wang, J.; Bai, Y.; Zhu, W.; Chen, L. J. Power Sources 2006, 158, 627. https://doi.org/10.1016/j.jpowsour.2005.10.010
  48. Munichandraiah, N.; Scanlon, L. G.; Marsh, R. A.; Kumar, B.; Sircar, A. K. Proceedings-Electrochemical Society 1993, 93, 97.
  49. Xi, J.; Miao, S.; Tang, X. Macromolecules 2004, 37, 8592. https://doi.org/10.1021/ma048849d
  50. Xi, J.; Ma, X.; Cui, M.; Huang, X.; Zheng, Z.; Tang, X. Chin. Sci. Bull. 2004, 49, 785. https://doi.org/10.1007/BF02889747
  51. Xi, J.; Qiu, X.; Zhu, W.; Tang, X. Microporous Mesoporous Mater. 2006, 88, 1. https://doi.org/10.1016/j.micromeso.2005.08.028
  52. Tominaga, Y.; Asai, S.; Sumita, M.; Panero, S.; Scrosati, B. J. Power Sources 2005, 146, 402. https://doi.org/10.1016/j.jpowsour.2005.03.035
  53. Shanmukaraj, D.; Murugan, R. J. Power Sources 2005, 149, 90. https://doi.org/10.1016/j.jpowsour.2005.02.008
  54. Shanmukaraj, D.; Wang, G. X.; Liu, H. K.; Murugan, R. J. Electrochem. Soc. 2005, 152(1), A205. https://doi.org/10.1149/1.1828952
  55. Pietrogiacomi, D.; Campa, M. C.; Tuti, S.; Indovina, V. Appl. Catal. B 2003, 41, 301. https://doi.org/10.1016/S0926-3373(02)00168-6
  56. Yadav, G. D.; Sengupta, S. Org. Process Res. Dev. 2002, 6, 256. https://doi.org/10.1021/op990099y
  57. Mishra, H. M.; Parida, K. M. Appl. Catal. A 2002, 224, 179. https://doi.org/10.1016/S0926-860X(01)00822-5
  58. Xi, J.; Qiu, X.; Zheng, S.; Tang, X. Polym. 2005, 46, 5702. https://doi.org/10.1016/j.polymer.2005.05.051
  59. Xi, J.; Tang, X. Chem. Phys. Lett. 2004, 393, 271. https://doi.org/10.1016/j.cplett.2004.06.054
  60. Croce, F.; Settimi, L.; Scrosati, B. Electrochem. Commun. 2006, 8, 364. https://doi.org/10.1016/j.elecom.2005.12.002
  61. Croce, F.; Sacchetti, S.; Scrosati, B. J. Power Sources 2006, 162, 685. https://doi.org/10.1016/j.jpowsour.2006.07.038
  62. Reiche, A.; Steurich, T.; Sandner, B.; Lobitz, P.; Fleischer, G. Electrochim. Acta 1995, 40, 2153.
  63. Sun, H. Y.; Sohn, H.-J.; Yamamoto, O.; Takeda, Y. J. Electrochem. Soc. 1999, 146, 1672. https://doi.org/10.1149/1.1391824
  64. Li, Q.; Imanishi, N.; Takeda, Y.; Hirano, A.; Yamamoto, O. Ionics 2002, 8, 79. https://doi.org/10.1007/BF02377756
  65. Li, Q.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. J. Power Sources 2002, 110, 38. https://doi.org/10.1016/S0378-7753(02)00215-X
  66. Itoh, T.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O. Solid State Ionics 2003, 156, 393. https://doi.org/10.1016/S0167-2738(02)00682-3
  67. Appetecchi, G. B.; Passerini, S. Electrochim. Acta 2000, 45, 2139. https://doi.org/10.1016/S0013-4686(99)00437-5
  68. Azizi Samir, M. A. S.; Alloin, F.; Gorecki, W.; Sanchez, J.; Dufresne, A. J. Phys. Chem. B 2004, 108, 10845. https://doi.org/10.1021/jp0494483
  69. Azizi Samir, M. A. S.; Alloin, F.; Sanchez, J.-Y.; El Kissi, N.; Dufresne, A. Macromolecules 2004, 37, 1386. https://doi.org/10.1021/ma030532a
  70. Skaarup, S.; West, K.; Zachau-Christiansen B. Solid State Ionics 1988, 28-30, 975. https://doi.org/10.1016/0167-2738(88)90314-1
  71. Appetecchi, G. B.; Passerini, S. Electrochim. Acta 2000, 45, 2139. https://doi.org/10.1016/S0013-4686(99)00437-5
  72. Quataorone, E.; Mustarelli, P.; Magistris, A. Solid State Ionics 1998, 110, 1. https://doi.org/10.1016/S0167-2738(98)00114-3
  73. Capuano, F.; Croce, F.; Scrosati, B. J. Electrochem. Soc. 1991, 138, 1918. https://doi.org/10.1149/1.2085900
  74. Croce, F.; Scrosati, B. J. Power Sources 1993, 43144, 9.
  75. Fu, J. J. Mater. Sci. 1998, 33, 1549. https://doi.org/10.1023/A:1017559619391
  76. Zhang, X.; Wang, C.; Appleby, A. J.; Little, F. E. J. Power Sources 2002, 112, 209. https://doi.org/10.1016/S0378-7753(02)00365-8
  77. Kumar, B.; Schaffer, J. S.; Munichandraiah, N.; Scanlon, L. G. J. Power Sources 1994, 47, 63 https://doi.org/10.1016/0378-7753(94)80051-0
  78. Cho, J.; Liu, M. Electrochem. Acta 1997, 12, 1481.
  79. Wang, Y.; Pan Y.; Kim, D. J. Power Sources 2006, 159, 690. https://doi.org/10.1016/j.jpowsour.2005.10.104
  80. Jacob, M. M. E.; Hackett, E.; Giannelis, E. P. J. Mater. Chem. 2003, 13, 1. https://doi.org/10.1039/b204458g
  81. Wachtler, M.; Ostrovskii, D.; Jacobsson, P.; Scrosati, B. Electrochim. Acta 2004, 50, 357. https://doi.org/10.1016/j.electacta.2004.01.103
  82. Slane, S.; Salomon, M. J. Power Sources 1995, 55, 7. https://doi.org/10.1016/0378-7753(94)02148-V
  83. Kim, K. M.; Ko, J. M.; Park, N.; Ryu, K. S.; Chang, S. H. Solid State Ionics 2003, 161, 121. https://doi.org/10.1016/S0167-2738(03)00211-X
  84. Kim, K. M.; Kim, J.; Ryu, K. S. Macromol. Mater. Eng. 2006, 291, 1495. https://doi.org/10.1002/mame.200600299
  85. Jiang, Y.; Chen, Z.; Zhuang, Q.; Xu, J.; Dong, Q.; Huang, L.; Sun, S. J. Power Sources 2006, 160, 1320. https://doi.org/10.1016/j.jpowsour.2006.02.029
  86. Stephan, A. M.; Nahm, K.; Kulandainathan, M. A.; Ravi, G.; Wilson, J. J. Appl. Electrochem. 2006, 36, 1091. https://doi.org/10.1007/s10800-006-9190-3
  87. Wu, C.; Lu, M.; Tsai, C.; Chuang, H. J. Power Sources 2006, 159, 295.
  88. Kim, K. M.; Park, N.; Ryu, Kwang S.; Chang, S. H. J. Appl. Polym. Sci. 2006, 102, 140. https://doi.org/10.1002/app.23361
  89. Kim, K. M.; Park, N.; Ryu, K. S.; Chang, S. H. Electrochim. Acta 2006, 51, 5636. https://doi.org/10.1016/j.electacta.2006.02.038
  90. Jeon, J.; Kim, M.; Kwak, S. J. Power Sources 2006, 162, 1304. https://doi.org/10.1016/j.jpowsour.2006.08.022
  91. Aravindan, V.; Vickraman, P. Ionics 2007, 13, 277. https://doi.org/10.1007/s11581-007-0106-y
  92. Aravindan, V.; Vickraman, P. Solid State Sci. 2007, 9, 1069. https://doi.org/10.1016/j.solidstatesciences.2007.07.011
  93. Jiang, Y.; Chen, Z.; Zhuang, Q.; Xu, J.; Dong, Q.; Huang, L.; Sun, S. J. Power Sources 2006, 160, 1320. https://doi.org/10.1016/j.jpowsour.2006.02.029
  94. Xi, J.; Qiu, X.; Chen, L. Solid State Ionics 2006, 177, 709. https://doi.org/10.1016/j.ssi.2006.01.032
  95. Wu, C.; Lu, M.; Tsai, C.; Chuang, H. J. Power Sources 2006, 159, 295. https://doi.org/10.1016/j.jpowsour.2006.04.108
  96. Qiu, W.; Ma, X.; Yang, Q.; Fu, Y.; Zong, X. J. Power Sources 2004, 138, 245. https://doi.org/10.1016/j.jpowsour.2004.06.061
  97. Song, M. K.; Cho, J. Y.; Cho, B. W.; Rhee, H. W. J. Power Sources 2002, 110, 209. https://doi.org/10.1016/S0378-7753(02)00258-6
  98. Yang, C.; Kim, H.; Na, B.; Kum, K.; Cho, B. W. J. Power Sources 2006, 156, 574 https://doi.org/10.1016/j.jpowsour.2005.06.018

Cited by

  1. Salt-in-Polymer Electrolytes for Lithium Ion Batteries Based on Organo-Functionalized Polyphosphazenes and Polysiloxanes vol.224, pp.10-12, 2010, https://doi.org/10.1524/zpch.2010.0046
  2. Synthesis of Al2TiO5 and its effect on the properties of chitosan–NH4SCN polymer electrolytes vol.19, pp.3, 2013, https://doi.org/10.1007/s11581-012-0763-3
  3. Structural and AC impedance studies on nanocomposite polymer electrolytes based on poly(ε-caprolactone) vol.131, pp.15, 2014, https://doi.org/10.1002/app.40524
  4. Electrochemical Characterization of Electrospun Nanocomposite Polymer Blend Electrolyte Fibrous Membrane for Lithium Battery vol.119, pp.16, 2015, https://doi.org/10.1021/jp5115477
  5. Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers vol.20, pp.10, 2016, https://doi.org/10.1007/s10008-016-3284-6
  6. Electrochemical and structural properties of a polymer electrolyte system based on the effect of CeO2 nanofiller with PVDF-co-HFP for energy storage devices vol.22, pp.7, 2016, https://doi.org/10.1007/s11581-016-1637-x
  7. fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries vol.6, pp.8, 2016, https://doi.org/10.1039/C5RA15700E
  8. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties vol.8, pp.11, 2016, https://doi.org/10.3390/polym8110387
  9. Li Interface vol.164, pp.12, 2017, https://doi.org/10.1149/2.0381712jes
  10. Effect of Al2O3 nanofiller on the electrical, thermal and structural properties of PEO:PPG based nanocomposite polymer electrolyte vol.23, pp.6, 2017, https://doi.org/10.1007/s11581-017-1976-2
  11. Investigation of ion conducting behaviour of composite chitosan based polymer electrolytes vol.15, pp.sup2, 2011, https://doi.org/10.1179/143307511X13031890748975
  12. Additives for Solid Polymer Electrolytes: The Layered Nanoparticles vol.571, pp.1662-9795, 2013, https://doi.org/10.4028/www.scientific.net/KEM.571.27
  13. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries vol.14, pp.12, 2018, https://doi.org/10.1002/smll.201703571
  14. Magnesium ion-conducting gel polymer electrolyte nanocomposites: Effect of active and passive nanofillers pp.02728397, 2018, https://doi.org/10.1002/pc.24853
  15. On PEO-Based MWCNT and Graphene Composite Electrolyte Structure vol.762, pp.1662-9795, 2018, https://doi.org/10.4028/www.scientific.net/KEM.762.209
  16. The effect of titanium dioxide nano-filler on the conductivity, morphology and thermal stability of poly(methyl methacrylate)—poly(styrene-co-acrylonitrile) based composite solid polymer electrolytes vol.29, pp.10, 2018, https://doi.org/10.1007/s10854-018-8815-8
  17. Microporous Poly(Vinylidene Fluoride - Trifluoroethylene)/Zeolite Membranes for Lithium-Ion Battery Applications vol.44, pp.None, 2012, https://doi.org/10.1016/j.proeng.2012.08.645
  18. Microporous membranes of NaY zeolite/poly(vinylidene fluoride-trifluoroethylene) for Li-ion battery separators vol.689, pp.None, 2009, https://doi.org/10.1016/j.jelechem.2012.10.030
  19. Enhancement of Li + ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers vol.7, pp.3, 2016, https://doi.org/10.1088/2043-6262/7/3/035011
  20. Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries vol.6, pp.8, 2009, https://doi.org/10.1088/2053-1591/ab25cd
  21. Enhancement of Mechanical Stability and Ionic Conductivity of Chitosan‐based Solid Polymer Electrolytes Using Silver Nanowires as Fillers vol.40, pp.9, 2009, https://doi.org/10.1002/bkcs.11844
  22. Nano‐Scale Complexions Facilitate Li Dendrite‐Free Operation in LATP Solid‐State Electrolyte vol.11, pp.26, 2009, https://doi.org/10.1002/aenm.202100707
  23. Effects of ionic liquids and silica nanoparticles on the ionic conductivities, mechanical properties, and rheological properties of sodium-containing solid polymer electrolytes vol.518, pp.None, 2009, https://doi.org/10.1016/j.jpowsour.2021.230748