DOI QR코드

DOI QR Code

Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst

  • Jung, Tae-Sung (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University,Korean Minjok Leadership Academy) ;
  • Kim, Tae-Woo (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Hwang, Seong-Ju (Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Sciences, Ewha Womans University)
  • Published : 2009.02.20

Abstract

A mesoporous assembly of layered titanate with well-dispersed Pt cocatalysts has been synthesized via a restacking of exfoliated titanate nanosheets and a simultaneous adsorption of Pt nanoparticles. According to powder X-ray diffraction analysis, the obtained mesoporous assembly shows amorphous structure corresponding to the disordered stacking of layered titanate crystallites. Field emission-scanning electron microscopy and $N_2$ adsorption-desorption isotherm measurement clearly demonstrate the formation of mesoporous structure with expanded surface area due to the house-of-cards type stacking of the titanate crystallites. From high resolution-transmission electron microscopy and elemental mapping analyses, it is found that Pt nanoparticles with the size of ~2.5 nm are homogeneously dispersed in the mesoporous assembly of layered titanate. In comparison with the protonated titanate, the present mesoporous assembly of layered titanate exhibits better photocatalytic activity for the photodegradation of organic molecules. This finding underscores that the restacking of exfoliated nanosheets is quite useful not only in creating mesoporous structure but also in improving the photocatalytic activity of titanium oxide.

Keywords

References

  1. Honda, K.; Fujishima, A. Nature 1972, 238, 37. https://doi.org/10.1038/238037a0
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69. https://doi.org/10.1021/cr00033a004
  3. Oh, W.-C.; Chen, M.-L. Bull. Kor. Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
  4. Kim, S. W.; Khan, R.; Kim, T.-J.; Kim, W.-J. Bull. Kor. Chem.Soc. 2008, 29, 1217. https://doi.org/10.5012/bkcs.2008.29.6.1217
  5. Anpo, M. Bull. Chem. Soc. Jpn. 2004, 77, 1427. https://doi.org/10.1246/bcsj.77.1427
  6. Kim, S.; Hwang, S.-J.; Choi, W. J. Phys. Chem. B 2005, 109, 24260. https://doi.org/10.1021/jp055278y
  7. Kim, T. W.; Hwang, S.-J.; Jhung, S. H.; Chang, J.-S.; Park, H.;Choi, W.; Choy, J.-H. Adv. Mater. 2008, 20, 539. https://doi.org/10.1002/adma.200701677
  8. Kim, T. W.; Hur, S. G.; Hwang, S.-J.; Park, H.; Choi, W.; Choy, J.-H. Adv. Funct. Mater. 2007, 17, 307. https://doi.org/10.1002/adfm.200600022
  9. Kim, T. W.; Hur, S. G.; Hwang, S.-J.; Choy, J.-H. Chem. Commum. 2006, 220.
  10. Kim, T. W.; Hwang, S.-J.; Park, Y.; Choi, W.; Choy, J.-H. J. Phys. Chem. C 2007, 111, 1658. https://doi.org/10.1021/jp0662552
  11. Park, H. M.; Kim, T. W.; Hwang, S.-J.; Choy, J.-H. Bull. Kor. Chem. Soc. 2006, 27, 1323. https://doi.org/10.5012/bkcs.2006.27.9.1323
  12. Kim, T. W.; Ha, H.-W.; Paek, M.-J.; Hyun, S.-H.; Choy, J.-H.;Hwang, S.-J. J. Phys. Chem. C 2008, 112, 14853. https://doi.org/10.1021/jp805488h
  13. Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. J. Phys. Chem. B 1999, 103, 3818. https://doi.org/10.1021/jp983478m
  14. Zhou, Y.; Ma, R.; Ebina, Y.; Takada, K.; Sasaki, T. Chem. Mater. 2006, 18, 1235 https://doi.org/10.1021/cm052284y
  15. Bae, E.; Choi, W.; Park, J.; Shin, H. S.; Kim, S. B.; Lee, J. S. J. Phys. Chem. B 2004, 108, 14093. https://doi.org/10.1021/jp047777p
  16. Hur, S. G.; Kim, T. W.; Hwang, S.-J.; Choy, J.-H. J. Photochem. Photobiol. A: Chem. 2006, 183, 176. https://doi.org/10.1016/j.jphotochem.2006.03.014
  17. Sasaki, T.; Nakano, S.; Yamauchi, S.; Watanabe, M. Chem. Mater. 1997, 9, 602. https://doi.org/10.1021/cm9604322
  18. Gregg, S. J.; Sing, K. S. W. In Adsorption, Surface Area and Porosity; Academic Press: London, 1976.

Cited by

  1. Exploration of Nanostructured Functional Materials Based on Hybridization of Inorganic 2D Nanosheets vol.118, pp.8, 2014, https://doi.org/10.1021/jp410626y
  2. Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries vol.18, pp.7, 2012, https://doi.org/10.1002/chem.201102628