References
- (a) Tanner, D. Angew. Chem. Int. Ed. Engl. 1994, 33, 599.(Please refer to the other references for details:no.13-no.18) https://doi.org/10.1002/anie.199405991
- Lee, W. K.; Ha, H.-J. Aldrichimica Acta 2003, 36, 57
- (a) Yun, J. M.; Sim, T. B.; Hahm, H. S.; Lee, W. K.; Ha, H.-J. J. Org. Chem. 2003, 68, 7675.(Please refer to the other references for details:no.19-no.22) https://doi.org/10.1021/jo034755a
- Han, S.-M.; Ma, S.-h.; Ha, H.-J.; Lee, W. K. Tetrahedron 2008, 64, 11110 https://doi.org/10.1016/j.tet.2008.09.068
- Lee, B. K.; Kim, M. S.; Hahm, H. S.; Kim, D. S.; Lee, W. K.; Ha, H.-J. Tetrahedron 2006, 62, 8393-8397 https://doi.org/10.1016/j.tet.2006.06.024
- (a) Hwang, G.-I.; Chung, J.-H.; Lee, W. K. Tetrahedron 1996, 52, 12111.(Please refer to the other references for details:no.23-no.27) https://doi.org/10.1021/jo961168z
- Unpublished results. Catalytic hydrogenation of 2-vinyl substituted aziridines provides a mixture of ring C-N bond reduction product and also side chain reduction product. The C(2)-N bond energy difference calculation, between N-methyl-2-ethylaziridine and N-methyl-2-vinylaziridine, was performed on a PC using Spartan'04 Quantum Mechanics Program (PC/X86). The optimization of the geometry of neutral molecules and radicals were preliminarily obtained by a PM3 semiempirical method. The energy minimizations were then performed using B3LYP functional. The 6-31+G*, 6-31G* and 6-311+G* were used for all C, H, O, N, S, Cl atoms. All geometry optimizations were performed without symmetry constraints to ensure that the resultant geometry is not a local minimum. The absolute energies of the calculated species were obtained without corrections for zero point vibrational energy. The homolytic bond dissociation energy (Ehomol(BD)) for all species investigated was calculated using the equation: (Ehomol (BD)) = [Eabs(radical1) = Eabs(radical2)] - Eab (neutral molecule). The calculation shows the C(2)-N bond energy of N-methyl-2-vinylaziridine is 14.9 kcal/mol less than that of the N-methyl-2-ethylaziridine
- (a) Margathe, J.-F.; Shipman, M.; Smith, S. C. Org. Lett. 2005, 7, 4987-4990.(Please refer to the other references for details:no.28-no.31) https://doi.org/10.1021/ol051953a
- (a) Gang, Z.; Kainan, Z.; Janis, L. Tetrahedron Lett. 2008, 49, 6797-6799.(Please refer to the other references for details:no.32-no.35) https://doi.org/10.1016/j.tetlet.2008.09.056
- Acid labile
- (a) Michael, H. H.; George, A. O. Org. Lett. 2002, 4, 1771.(Please refer to the other references for details:no.37-no.39) https://doi.org/10.1021/ol025844x
- (a) Lim, Y.; Lee, W. K. Tetrahedron Lett. 1995, 36, 8431.(Please refer to the other references for details:no.40) https://doi.org/10.1016/0040-4039(95)01814-X
- (b) Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York, 1996; Vol. 1A, p.1.
- (c) Osborn, H. M. I.; Sweeney, J. B.; Tetrahedron: Asymmetry 1997, 8, 1693. https://doi.org/10.1016/S0957-4166(97)00177-8
- (d) McCoull, W.; Davis, F. A. Synthesis 2000, 1347. https://doi.org/10.1055/s-2000-7097
- (e) Zwanenburg, B.; ten Holte, P. In Stereoselective Heterocyclic Chemistry III; Metz, P., Ed.; Springer: Berlin, 2001, p. 93-124.
- (f) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. https://doi.org/10.1039/b006015l
- (g) Hu, X. E. Tetrahedron 2004, 60, 2701 https://doi.org/10.1016/j.tet.2004.01.042
- (b) Jang, S.-Y.; Ha, Y. H.; Ko, S. W.; Lee, W.; Lee, J.; Kim, S.; Kim, Y. W.; Lee, W. K.; Ha, H.-J. Bioorg. Med. Chem. Lett. 2004, 14, 3881. https://doi.org/10.1016/j.bmcl.2004.05.066
- (c) Kim, M. S.; Kim, Y.-W.; Hahm, H. S.; Jang, J. W.; Lee, W. K.; Ha, H.-J. Chem. Commun. 2005, 3062. https://doi.org/10.1039/b503750f
- (d) Yoon, H. J.; Kim, Y.-W.; Lee, B. K.; Lee, W. K.; Kim Y.; Ha, H.-J. Chem. Commun. 2007, 79. https://doi.org/10.1039/b612740a
- (b) Kim, Y; Ha, H.-J.; Yun, S. Y.; Lee, W. K. Chem. Commun. 2008, 4363 https://doi.org/10.1039/b809124b
- (b) Choi, S.-K.; Lee, J.-S.; Kim, J.-H.; Lee, W. K. J. Org. Chem. 1997, 62, 743-745. https://doi.org/10.1021/jo961168z
- (c) Bae, J. H.; Shin, S.-H.; Park, C. S.; Lee, W. K. Tetrahedron 1999, 55, 10041. https://doi.org/10.1016/S0040-4020(99)00538-4
- (d) Shin, S.-H.; Han, E. Y.; Park, C. S.; Lee, W. K.; Ha, H.-J. Tetrahedron: Asymmetry 2000, 11, 3283. https://doi.org/10.1016/S0957-4166(00)00319-0
- (e) Lee, K.-D.; Suh, J.-M.; Park, J.-H.; Ha, H.-J.; Choi, H. G.; Park, C. S.; Chang, J. W.; Lee, W. K.; Dong, Y.; Yun, H. Tetrahedron 2001, 57, 9655.
- (f) Park, C. S.; Kim, M. S.; Sim, T. B.; Pyun, D. K.; Lee, C. H.; Lee, W. K. J. Org. Chem. 2003, 68, 43 https://doi.org/10.1021/jo025545l
- (b) Bussolo, V. D.; Romano, M. R.; Favero, L.; Pineschi, M.; Crotti, P. J. Org. Chem. 2006, 71, 1696-1699. https://doi.org/10.1021/jo051877p
- (c) Mita, T.; Fukuda, N.; Roca, F. X. ; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 259-262. https://doi.org/10.1021/ol062663c
- (d) Hman, J.; Jarevng, T.; Somfai, P. J. Org. Chem. 1996, 61, 8148-8159. https://doi.org/10.1021/jo9612638
- (e) Ling, R.; Yoshida, M.; Mariano, P. S. J. Org. Chem. 1996, 61, 4439-4449 https://doi.org/10.1021/jo960316i
- (b) Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836-11837. https://doi.org/10.1021/ja037450m
- (c) Trost, B. M.; Dong, G. Org. Lett. 2007, 9, 2357-2359. https://doi.org/10.1021/ol070742y
- (d) Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65, 5887-5890. https://doi.org/10.1021/jo000608q
- (e) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 999-1015. https://doi.org/10.1021/jo961760o
- (f) Iska, V. B. R.; Gais, H.-J.; Tiwari, S. K.; Babu, G. S.; Adrien, A. Tetrahedron Lett. 2007, 48, 7102-7107 https://doi.org/10.1016/j.tetlet.2007.07.216
- (b) Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B. Tetrahedron 1976, 32, 2157. https://doi.org/10.1016/0040-4020(76)85128-9
- (c) Hunig, S.; Muller, H. R.; Their, W. Angew. Chem. Intl. Ed. Engl. 1965, 4, 271. https://doi.org/10.1002/anie.196502711
- (d) Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507 https://doi.org/10.1021/jo9710137
- (b) Chang, J.-W.; Bae, J. H.; Shin, S.-H.; Park, C. S.; Choi, D.; Lee, W. K. Tetrahedron Lett. 1998, 39, 9193 https://doi.org/10.1016/S0040-4039(98)02095-4
Cited by
- Application of Regio- and Stereoselective Functional Group Transformations of Chiral Aziridine-2-carboxylates vol.3, pp.10, 2014, https://doi.org/10.1002/ajoc.201402098
- Nucleophile-Dependent Regio- and Stereoselective Ring Opening of 1-Azoniabicyclo[3.1.0]hexane Tosylate vol.9, pp.4, 2014, https://doi.org/10.1002/asia.201301551
- One-pot multiple reactions: asymmetric synthesis of 2,6-cis-disubstituted piperidine alkaloids from chiral aziridine vol.14, pp.27, 2016, https://doi.org/10.1039/C6OB00806B
- ChemInform Abstract: Selective Reduction of C-C Double Bonds of 2-Vinylaziridines: Preparation of Enantiomerically Pure 2-Alkylaziridines. vol.41, pp.18, 2010, https://doi.org/10.1002/chin.201018093
- An efficient synthesis of enantiomerically pure aromatic-fused N-containing heterocycles from common chiral aziridines vol.66, pp.40, 2010, https://doi.org/10.1016/j.tet.2010.07.027
- A simple and straightforward approach toward selective C=C bond reduction by hydrazine vol.90, pp.9, 2012, https://doi.org/10.1139/v2012-057