DOI QR코드

DOI QR Code

Partially Folded States of Mutant Ubiquitin in Mild Denaturing Conditions

  • Park, Soon-Ho (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry,Kangnung-Wonju National University)
  • Published : 2009.07.20

Abstract

Conformational change of ubiquitin variant with valine to alanine mutation at sequence position 26 was studied by varying solvent pH. Fluorescence emission spectra indicated that this variant ubiquitin has some residual structures in acidic and basic solution as compared to denaturant-induced unfolded state. Far-UV circular dichroic spectra indicated that the base-denatured state had more secondary structure than the acid-denatured state. Near-UV circular dichroic spectra indicated that the aromatic side-chains were in the relatively more rigid environment in the base-denatured state than those in the acid-denatured state. Although it appears that the more tertiary structure present in the base-denatured state, refolding reactions measured by stopped-flow fluorescence device suggest that both the acid- and base-denatured states occur before the major folding transition state. The acid- and base-denatured states are considered to reflect the early event of protein folding process.

Keywords

References

  1. Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1982, 51, 459 https://doi.org/10.1146/annurev.bi.51.070182.002331
  2. Kim, P. S.; Baldwin, R. L. Annu. Rev. Biochem. 1990, 59, 631 https://doi.org/10.1146/annurev.bi.59.070190.003215
  3. Matthews, C. R. Annu. Rev. Biochem. 1993, 62, 653 https://doi.org/10.1146/annurev.bi.62.070193.003253
  4. Ptitsyn, O. B. Adv. Protein Chem. 1995, 47, 83 https://doi.org/10.1016/S0065-3233(08)60546-X
  5. Kuwajima, K.; Hiraoka, Y.; Ikeguchi, M.; Sugai, S. Biochemistry 1985, 24, 874 https://doi.org/10.1021/bi00325a010
  6. Arai, M.; Kuwajima, K. Fold. Des. 1996, 1, 275 https://doi.org/10.1016/S1359-0278(96)00041-7
  7. Park, S.-H.; O'Neil, K. T.; Roder, H. Biochemistry 1997, 36, 14277 https://doi.org/10.1021/bi971914+
  8. Jackson, S. E. Org. Biomol. Chem. 2006, 4, 1845 https://doi.org/10.1039/b600829c
  9. Khorasanizadeh, S.; Peters, I. D.; Roder, H. Nat. Struct. Biol. 1996, 3, 193 https://doi.org/10.1038/nsb0296-193
  10. Krantz, B. A.; Sosnick, T. R. Biochemistry 2000, 39, 11696 https://doi.org/10.1021/bi000792+
  11. Went, H. M.; Benitez-Cordoza, C. G.; Jackson, S. E. FEBS Lett. 2004, 567, 333 https://doi.org/10.1016/j.febslet.2004.04.089
  12. Fink, A. L.; Calciano, L. J.; Goto, Y.; Kurotsu, T.; Palleros, D. R. Biochemistry 1994, 33, 12504 https://doi.org/10.1021/bi00207a018
  13. Uversky, V. N. FEBS Lett. 2002, 514, 181 https://doi.org/10.1016/S0014-5793(02)02359-1
  14. Ecker, D. J.; Khan, M. I.; Marsh, J.; Butt, T. R.; Crooke, S. T. J. Biol. Chem. 1987, 262, 3524
  15. Khorasanizadeh, S.; Peters, I. D.; Butt, T. R.; Roder, H. Biochemistry 1993, 32, 7054 https://doi.org/10.1021/bi00078a034
  16. Pace, C. N. CRC Crit. Rev. Biochem. 1975, 3, 1 https://doi.org/10.3109/10409237509102551
  17. Peterman, B. F. Anal. Biochem. 1979, 93, 442 https://doi.org/10.1016/S0003-2697(79)80176-1
  18. Stryer, L. Science 1968, 162, 526 https://doi.org/10.1126/science.162.3853.526
  19. Wintrode, P. L.; Makhatadze, G. I.; Privalov, P. L. Proteins 1994, 18, 246 https://doi.org/10.1002/prot.340180305
  20. Park, S.-H. J. Biochem. Mol. Biol. 2004, 37, 676 https://doi.org/10.5483/BMBRep.2004.37.6.676
  21. Wilkinson, K. D.; Mayer, A. N. Arch. Biochem. Biophys. 1986, 250, 390 https://doi.org/10.1016/0003-9861(86)90741-1
  22. Cox, J. P. L.; Evans, P. A.; Packman, L. C.; Williams, D. H.; Woolfson, D. N. J. Mol. Biol. 1993, 234, 483 https://doi.org/10.1006/jmbi.1993.1600
  23. Greenfield, N.; Fasman, G. D. Biochemistry 1969, 8, 4108 https://doi.org/10.1021/bi00838a031
  24. Sears, D. W.; Beychok, S. Circular Dichroism, in Physical Principles and Techniques of Protein Chemistry Part C; Leach, S. J., Ed.; Academic Press: New York, U.S.A., 1979; p 446
  25. Myers, J. K.; Pace, C. N.; Scholtz, J. M. Protein Sci. 1995, 4, 2138 https://doi.org/10.1002/pro.5560041020
  26. Crespo, M. D.; Platt, G. W.; Bofill, R.; Searle, M. S. Eur. J. Biochem. 2004, 271, 4474 https://doi.org/10.1111/j.1432-1033.2004.04392.x

Cited by

  1. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR vol.25, pp.8, 2016, https://doi.org/10.1002/pro.2940
  2. Folding Mechanism of WT* Ubiquitin Variant Studied by Stopped-flow Fluorescence Spectroscopy vol.31, pp.10, 2009, https://doi.org/10.5012/bkcs.2010.31.10.2877