DOI QR코드

DOI QR Code

Sn2/E2 Branching in Protic Solvents: A Mechanistic Study

  • Oh, Young-Ho (Department of Applied Chemistry, Kyunghee University) ;
  • Im, Suk (Department of Applied Chemistry, Kyunghee University) ;
  • Park, Sung-Woo (Department of Applied Chemistry, Kyunghee University) ;
  • Lee, Sung-Yul (Department of Applied Chemistry, Kyunghee University) ;
  • Chi, Dae-Yoon (Department of Chemistry, Sogang University)
  • 발행 : 2009.07.20

초록

We present calculations for $S_N$2/E2 reactions in protic solvents (t-butyl alcohol, ethylene glycol). We focus on the role of the hydroxyl (-OH) groups in determining the $S_N$2/E2 rate constants. We predict that the ion pair E2 mechanism is more favorable than the naked ion E2 reaction in ethylene glycol. E2 barriers are calculated to be much larger (~ 9 kcal/mol) than $S_N$2 reaction barriers in protic solvents, in agreement with the experimental observation [Kim, D. W. et al. J. Am. Chem. Soc. 2006, 128, 16394] of no E2 products in the reaction of CsF in t-butyl alcohol.

키워드

참고문헌

  1. Shaik, S.; Schlegel, H. B.; Wolfe, S. Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism.; Wiley: New York, 1992
  2. Harder, S.; Streitwieser, A.; Petty, J. T.; Schleyer, P. V. R. J. Am. Chem. Soc. 1995, 117, 3253 https://doi.org/10.1021/ja00116a029
  3. Streitwieser, A.; Choy, G. S.-C.; Abu-Hasanayn, F. J. Am. Chem. Soc. 1997, 119, 5013 https://doi.org/10.1021/ja961673d
  4. Hasanayn, F.; Streitwieser, A.; Al-Rifai, R. J. Am. Chem. Soc. 2005, 127, 2249 https://doi.org/10.1021/ja0487978
  5. Adamovic, I.; Gordon, M. S. J. Phys. Chem. A 2005, 109, 1629 https://doi.org/10.1021/jp040665d
  6. Vayner, G.; Houk, K. N.; Jorgensen, W. L.; Brauman, J. I. J. Am. Chem. Soc. 2004, 126, 9054 https://doi.org/10.1021/ja049070m
  7. Uggerud, E. J. Phys. Org. Chem. 2006, 19, 461 https://doi.org/10.1002/poc.1061
  8. Uggerud, Chem. Eur. J. 2006, 12, 1127 https://doi.org/10.1002/chem.200500639
  9. Pliego, Jr., J. R. J. Phys. Chem. B 2009, 113, 505 https://doi.org/10.1021/jp808581t
  10. Koh, H. J.; Kang, S. J.; Dennis, N.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 29, 1927 https://doi.org/10.5012/bkcs.2008.29.10.1927
  11. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769 https://doi.org/10.5012/bkcs.2008.29.9.1769
  12. Kim, D. W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H.-S.; Oh, S. J.; Lee, S. J.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. J. Am. Chem. Soc. 2006, 128, 16394 https://doi.org/10.1021/ja0646895
  13. Oh, Y.-H.; Ahn, D.-S.; Chung, S.-Y.; Jeon, J.-H.; Park, S.-W.; Oh, S. J.; Kim, D. W.; Kil, H. S.; Chi, D. Y.; Lee, S. J. Phys. Chem. A 2007, 111, 10152 https://doi.org/10.1021/jp0743929
  14. Im, S.; Jang, S.-W.; Kim, H.-R.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Chi, D. W. J. Phys. Chem. A 2009, 113, 3685 https://doi.org/10.1021/jp900576x
  15. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002, 124, 10278 https://doi.org/10.1021/ja026242b
  16. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281 https://doi.org/10.1021/jo034109b
  17. Lee, S.-S.; Kim, H.-S.; Hwang, T.-K.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Lee, B. S.; Chi, D. Y. Org. Lett. 2008, 10, 61 https://doi.org/10.1021/ol702627m
  18. Im, S.; Jang, S.-W.; Kim, H.-R.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Chi, D. Y. J. Phys. Chem. A 2009, 113, 3685 https://doi.org/10.1021/jp900576x
  19. Pliego, Jr., J. R.; Piló-Veloso, D. J. Phys. Chem. B 2007, 111, 1752 https://doi.org/10.1021/jp066580p
  20. Almerindo, G. I.; Pliego, Jr., J. R. Chem. Phys. Lett. 2006, 423, 459 https://doi.org/10.1016/j.cplett.2006.04.015
  21. Pliego, Jr., J. R. Org. Biomol. Chem. 2006, 4, 1667 https://doi.org/10.1039/b601179a
  22. Tondo, D. W.; Pliego, Jr., J. R. J. Phys. Chem. A 2005, 109, 507 https://doi.org/10.1021/jp047386a
  23. Pliego, Jr., J. R. J. Mol. Cat. A 2005, 239, 228 https://doi.org/10.1016/j.molcata.2005.06.025
  24. Westphal, E.; Pliego, Jr., J. R. Phys. Chem. A 2007, 111, 10068 https://doi.org/10.1021/jp074842x
  25. Craig, S. L.; Brauman, J. I. J. Am. Chem. Soc. 1999, 121, 6690 https://doi.org/10.1021/ja983010x
  26. Gronert, S.; Pratt, L. M.; Mogali, S. J. Am. Chem. Soc. 2001, 123, 3081 https://doi.org/10.1021/ja003955q
  27. Flores, A. E.; Gronert, S. J. Am. Chem. Soc. 1999, 121, 2627 https://doi.org/10.1021/ja983922z
  28. DePuy, C. H.; Gronert, S.; Mullin, A.; Bierbaum, V. M. J. Am. Chem. Soc. 1990, 112, 8650 https://doi.org/10.1021/ja00180a003
  29. Ensing, B.; Laio, A.; Gervasio, F. L.; Parrinello, M.; Klein, M. L. J. Am. Chem. Soc. 2004, 126, 9492 https://doi.org/10.1021/ja048285t
  30. Saunders, Jr., W. H. J. Org. Chem. 2000, 65, 681 https://doi.org/10.1021/jo991207h
  31. Bento, A. P.; Sola, M.; Bickelhaupt, F. M. J. Chem. Theory Comput. 2008, 4, 929 https://doi.org/10.1021/ct700318e
  32. Pabis, A.; Paluch, P.; Szala, J.; Paneth, P. J. Chem. Theory Comput. 2009, 5, 33 https://doi.org/10.1021/ct800412h
  33. Thibblin, A. J. Am. Chem. Soc. 1989, 111, 5412 https://doi.org/10.1021/ja00196a054
  34. Jia, Z. S.; Rudziński, J.; Paneth, P.; Thibblin, A. J. Org. Chem. 2002, 67, 177 https://doi.org/10.1021/jo0159340
  35. Pliego, J. R.; Riveros, J. M. J. Phys. Chem. A 2002, 106, 371 https://doi.org/10.1021/jp0114081
  36. Almerindo, G. I.; Pliego, J. R. Org. Lett. 2005, 7, 1821 https://doi.org/10.1021/ol0504547
  37. Lynch, B. J.; Fast, P. I.; Harris, M.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 4811 https://doi.org/10.1021/jp000497z
  38. Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 1998, 108, 664 https://doi.org/10.1063/1.475428
  39. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299 https://doi.org/10.1063/1.448975
  40. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004

피인용 문헌

  1. F-labelled radiopharmaceuticals in ethanol and water vol.51, pp.79, 2015, https://doi.org/10.1039/C5CC05919D
  2. Solvent Effect on the Potential Energy Surfaces of the F- + CH3CH2Br Reaction vol.122, pp.27, 2009, https://doi.org/10.1021/acs.jpca.8b02687