DOI QR코드

DOI QR Code

Amyloglucosidase Catalyzed Syntheses of Bakuchiol Glycosides in Supercritical Carbon Dioxide

  • Manohar, Balaraman (Food Engineering Department, Central Food Technological Research Institute) ;
  • Divakar, Soundar (Fermentation Technology and Bioengineering Department,Central Food Technological Research Institute) ;
  • Sankar, Kadimi Udaya (Food Engineering Department, Central Food Technological Research Institute)
  • Published : 2009.08.20

Abstract

Enzymatic syntheses of water soluble Bakuchiol glycosides were carried out in di-isopropyl ether organic media using amyloglucosidase from Rhizopus mold. The reactions were carried out under conventional reflux conditions and in supercritical $CO_2$ atmospheric conditions. Out of the eleven carbohydrate molecules employed for the reaction, D-glucose, D-ribose and D-arabinose gave glycosides in yields of 9.0% to 51.4% under conventional reflux conditions. Under supercritical $CO_2$ atmosphere (100 bar pressure at 50 ${^{\circ}C}$), bakuchiol formed glycosides with Dglucose, D-galactose, D-mannose, D-fructose, D-ribose, D-arabinose, D-sorbitol and D-mannitol in yields ranging from 9% to 46.6%. Out of the bakuchiol glycosides prepared, 6-O-(6-D-fructofruranosyl)bakuchiol showed the best antioxidant (1.4 mM) and ACE inhibitory activities (0.64 mM).

Keywords

References

  1. Kondo, Y.; Kato, A.; Kubota, Y.; Nozoe, S. Heterocycles 1990, 31, 187-190 https://doi.org/10.3987/COM-89-5267
  2. Latha, P. G.; Evans, D. A.; Panikkar, K. R.; Jayawardhanan, K. K. Fitoterpia. 2000, 3, 223-231
  3. Katsura, H.; Tsutikiyama, R.; Suzuki, A.; Kobayashi, M. Anti Microbial Agents Chemother. 2001, 45(11), 3009-3013 https://doi.org/10.1128/AAC.45.11.3009-3013.2001
  4. Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Phytotherapy Research 2002, 16, 39-544
  5. Grice, H. C. Food and Chemical Toxicology 1986, 24, 1127-1130 https://doi.org/10.1016/0278-6915(86)90298-X
  6. Wichi, H. P. Food and Chemical Toxicology 1988, 26, 717- 723 https://doi.org/10.1016/0278-6915(88)90072-5
  7. Tai, C. Y.; Huang, S. C.; Huang, M. S.; Liu, H. S. J. Chin. Inst. Chem. Eng. 2001, 32(3), 269-275
  8. Russell, A. J.; Beckman, E. J. Enzyme Microb. Technol. 1991, 13(12), 1007 https://doi.org/10.1016/0141-0229(91)90124-S
  9. Randolph, T. W.; Blanch, H. W.; Prausnitz, J. M.; Wilke, C. R. Biotechnol. Lett. 1985, 7(5), 325-328 https://doi.org/10.1007/BF01030279
  10. Marty, A.; Chulalaksananukul, W.; Condoret, J. S.; Willemont, R. M; Durand, G. Biotechnol. Lett. 1990, 12(1), 11-16 https://doi.org/10.1007/BF01028485
  11. Knez, M. H.; Krmelj ,V. J. Supercrit. Fluids 1998, 14, 17-29 https://doi.org/10.1016/S0896-8446(98)00097-7
  12. Turner, C.; Persson, M.; Mathiasson, L.; Adlercreutz, P.; King, J. W. Enzyme Microb. Technol. 2001, 29, 111-121 https://doi.org/10.1016/S0141-0229(01)00359-3
  13. Yu, H. M.; Lin, H. L.; Wu, C. Y.; Tseng, M. J.; Chen, S. T.; Jeyashoke, N.; Krisnangkura, K. J. Chin. Chem. Soc. 1999, 46(5), 647-650
  14. Chi, Y. M.; Nakamura, K.; Yano, T. Agric. Biol. Chem. 1988, 52(6), 1541-1550 https://doi.org/10.1271/bbb1961.52.1541
  15. Nelson, L. A.; Foglia, T. A.; Marmer, W. N. J. Am. Oil Chem. Soc. 1996, 73(9), 1191-1195 https://doi.org/10.1007/BF02523383
  16. Miller, D. A.; Blanch, H. W.; Prausnitz, J. M. Ind. Eng. Chem. Res. 1991, 30, 939-946 https://doi.org/10.1021/ie00053a017
  17. Compton, D. L.; King, J. W. J. Am. Oil Chem. Soc. 2001, 78(1), 43-47 https://doi.org/10.1007/s11746-001-0217-z
  18. Sumner, J. B.; Sisler, E. B. Arch. Biochem. 1944, 4, 333-336
  19. Moon, J. H.; Tearo, J. J. Agri. Food Chem. 1998, 48, 5062-5065
  20. Cushman, D. W.; Cheung, H. S. Biochem. Pharmacol. 1971, 20, 1637-1638 https://doi.org/10.1016/0006-2952(71)90292-9

Cited by

  1. ChemInform Abstract: Amyloglucosidase-Catalyzed Syntheses of Bakuchiol Glycosides in Supercritical Carbon Dioxide. vol.40, pp.52, 2009, https://doi.org/10.1002/chin.200952200