DOI QR코드

DOI QR Code

Influence of the Structural Characteristics of Amino Acids on Direct Methylation Behaviors by TMAH in Pyrolysis

  • Published : 2009.11.20

Abstract

Direct methylation behaviors of 20 amino acids with tetramethylammonium hydroxide (TMAH) were studied under diluted conditions with silica. Amino acid concentration was controlled by dilution with silica ($SiO_2$) and the molar ratios of amino acid/silica were 0.20, 0.50, and 2.0. The molar ratios of amino acid/TMAH (0.51 - 4.64) also varied. It was found that arginine, asparagine, aspartic acid, cysteine, glutamic acid, and glutamine did not generate any directly methylated pyrolysis products, whereas alanine, glycine, isoleucine, leucine, methionine, phenylanaline, valine, and proline generated all the directly methylated pyrolysis products. Tri- and tetra methylated products of lysine consisted of two types. Histidine and threonine hardly generated the partly methylated products. Mono- and dimethylated products of serine, tryptophan, and tyrosine were not observed. Relative intensities of the methylated products varied with the amino acid concentration, TMAH concentration, and pyrolysis temperature. Direct methylation behaviors of amino acids were explained by the structural characteristics of amino acids.

Keywords

References

  1. Moldoveanu, S. C. Analytical Pyrolysis of Natural Organic Polymers Techniques and Instrumentation in Analytical Chemistry, Vol. 20; Elsevier: Amsterdam, 1998
  2. Schulten, H. R.; Gleixner, G. Water Res. 1999, 33, 2489-2498 https://doi.org/10.1016/S0043-1354(98)00493-X
  3. Koo, J.; Park, C. H.; Han, C.; Na, Y. C. Bull. Kor. Chem. Soc. 2009, 30, 368-372 https://doi.org/10.5012/bkcs.2009.30.2.368
  4. Ratcliff, M. A.; Medley, E. E.; Simmonds, P. G. J. Org. Chem. 1974, 39, 1481-1490 https://doi.org/10.1021/jo00924a007
  5. Chiavari, G.; Galletti, G. C. J. Anal. Appl. Pyrolysis 1992, 24, 123-137 https://doi.org/10.1016/0165-2370(92)85024-F
  6. Stankiewicz, B. A.; van Bergen, P. F.; Duncan, I. J.; Carter, J. F.; Briggs, D. E. G.; Evershed, R. P. Rapid Commun. Mass Spectrom. 1996, 10, 1747-1757 https://doi.org/10.1002/(SICI)1097-0231(199611)10:14<1747::AID-RCM713>3.0.CO;2-H
  7. Basiuk, V. A.; Navarro-Gonzalez, R.; Basiuk, E. V. J. Anal. Appl. Pyrolysis 1998, 45, 89-102 https://doi.org/10.1016/S0165-2370(98)00057-6
  8. Zang, X.; Brown, J. C.; van Heemst, J. D. H.; Palumbo, A.; Hatcheret, P. G. J. Anal. Appl. Pyrolysis 2001, 61, 181-193 https://doi.org/10.1016/S0165-2370(01)00151-6
  9. Challinor, J. M. J. Anal. Appl. Pyrolysis 1989, 16, 323-333 https://doi.org/10.1016/0165-2370(89)80015-4
  10. Lehtonen, T.; Peuravuori, J.; Pihlaja, K. J. Anal. Appl. Pyrolysis 2003, 68/69, 315-329 https://doi.org/10.1016/S0165-2370(03)00050-0
  11. Joll, C. A.; Huynh, T.; Heitzet, A. J. Anal. Appl. Pyrolysis 2003, 70, 151-167 https://doi.org/10.1016/S0165-2370(02)00129-8
  12. Voorhees, K. J.; Basile, F.; Beverly, M. B.; Abbas-Hawks, C.; Hendricker, A.; Cody, R. B.; Hadfield, T. L. J. Anal. Appl. Pyrolysis 1997, 40/41, 111-134 https://doi.org/10.1016/S0165-2370(97)00035-1
  13. Abbas-Hawks, C.; Voorhees, K. J.; Hadfield, T. L. Rapid Commun. Mass Spectrom. 1996, 10, 1802-1806 https://doi.org/10.1002/(SICI)1097-0231(199611)10:14<1802::AID-RCM761>3.0.CO;2-Y
  14. Zang, X.; van Heemst, J. D. H.; Dna, K. J.; Hatcher, P. G. Org. Geochem. 2000, 31, 679-695 https://doi.org/10.1016/S0146-6380(00)00040-1
  15. Knicker, H.; Hatcher, P. G. Naturwissenschaften 1997, 84, 231-234 https://doi.org/10.1007/s001140050384
  16. Gallois, N.; Templier, J.; Derenne, S. J. Anal. Appl. Pyrolysis 2007, 80, 216-230 https://doi.org/10.1016/j.jaap.2007.02.010
  17. Hendricker, A. D.; Voorhees, K. J. J. Anal. Appl. Pyrolysis 1998, 48, 17-33 https://doi.org/10.1016/S0165-2370(98)00100-4
  18. Kuroda, K.; Inoue, Y.; Sakai, K. J. Anal. Appl. Pyrolysis 1990, 18, 59-69 https://doi.org/10.1016/0165-2370(90)85005-8
  19. Wolff, S.; Wang, M.-J. Rubber Chem. Technol. 1992, 65, 329 https://doi.org/10.5254/1.3538615
  20. Ou, Y.-C.; Yu, Z.-Z.; Vidal, A.; Donnet, J. B. Rubber Chem. Technol. 1994, 67, 834 https://doi.org/10.5254/1.3538714
  21. Byers, J. T. Rubber World 1998, 218(6), 38
  22. Choi, S.-S.; Choi, S.-J. Bull. Kor. Chem. Soc. 2006, 27, 1473 https://doi.org/10.5012/bkcs.2006.27.9.1473
  23. Nist standard reference database number 69, http://webbook.nist.gov/chemistry/

Cited by

  1. Recent applications in analytical thermochemolysis vol.89, pp.1, 2009, https://doi.org/10.1016/j.jaap.2010.05.007
  2. Investigation of the pyrolysis products of methionine‐enkephalin‐Arg‐Gly‐Leu using liquid chromatography–tandem mass spectrometry vol.45, pp.11, 2009, https://doi.org/10.1002/jms.1845
  3. Insights into the Reactivity of Gold–Dithiocarbamato Anticancer Agents toward Model Biomolecules by Using Multinuclear NMR Spectroscopy vol.19, pp.40, 2009, https://doi.org/10.1002/chem.201302550
  4. Formation of Methoxybenzenes from Cellulose in the Presence of Tetramethylammonium Hydroxide by Pyrolysis vol.34, pp.2, 2009, https://doi.org/10.5012/bkcs.2013.34.2.649