DOI QR코드

DOI QR Code

Synthesis of (5R,8R)-2-(3,8-Dimethyl-2-oxo-1,2,4,5,6,7,8,8α-octahydroazulen-5-yl) Acrylic Acid (Rupestonic Acid) Amide Derivatives and in vitro Inhibitive Activities against Influenza A3,B and Herpes Simplex Type 1 and 2 Virus

  • Yong, Jian-Ping (Xinjiang Technical Institute of Physics and Chemistry, The Key Laboratory of Plant Resources and Natural Products Chemistry, Chinese Academy of Science) ;
  • Lv, Qiao-Ying (Xinjiang Technical Institute of Physics and Chemistry, The Key Laboratory of Plant Resources and Natural Products Chemistry, Chinese Academy of Science) ;
  • Aisa, Haji Akber (Xinjiang Technical Institute of Physics and Chemistry, The Key Laboratory of Plant Resources and Natural Products Chemistry, Chinese Academy of Science)
  • Published : 2009.02.20

Abstract

19 Aromatic ring and L-amino acid ester contained rupestonic acid amide derivatives 2a~2l, 3a~3g were synthesized and preliminarily evaluated in vitro against influenza virus $A_3$,B and herpes simplex virus type 1 (HSV-1), 2(HSV-2) by the national center for drug screening of China. The rusults showed that 2i possessed the highest inhibition against both influenza virus $A_3\;(TC_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;19.2\;{\mu}$mol/L, SI = 6.3) and B (T$C_{50}\;=\;120.6\;{\mu}mol/L,\;IC_{50}=\;29.9\;{\mu}$mol/L, SI = 4.0); 2g was more active against influenza $A_3$ virus at very low cytotoxicity ($TC_{50}\;>\;2092.1\;{\mu}mol/L,\;IC_{50}=\;143.7\;{\mu}mol/L,$ SI > 14.6) than the parent compound; Compounds 2b, 2c, 2f showed higher activities both against HSV-1 and HSV-2 than that of the parent compound, and 2f was the most potent inhibitor of HSV-1 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;11.3\;{\mu}mol$/L, SI = 17.7 ) and HSV-2 ($TC_{50}\;=\;200.0\;{\mu}mol/L,\;IC_{50}\;=\;20.7\;{\mu}mol$/L , SI = 9.7).

Keywords

References

  1. Chen, X. Y.; Wang, S. H. Chin. Trad. & Herb. Drugs 1981, 12, 25.
  2. Siirafil, E. B.; Askar, E. Y.; Ilhamjan, W. F. E. Chin. J. Biochem. & Mol. Biol. 2001, 17, 226.
  3. Zhan, B. H.; Wang, Y. N.; Zhang, Y. Q. Chin. J. of Modern Med. 2005, 15, 1968.
  4. Srapil, E. B.; Abdiryim, Y. S. F.; Gulnar, D. W. T. Chin. J. Integrated Trad. West. Med. 2002, 22, 126.
  5. Srapil, E. B.; Gulnar, D. W. T.; Liu, F. Chin. J. Trad. Drugs 1996, 2, 35.
  6. Aisa, H. A.; Yong, J. P.; Lv, Q. Y.; Wu, T. Acta Cryst. E 2008, 64, o479. https://doi.org/10.1107/S1600536808001402
  7. Sheu, J. H.; Hung, K. C.; Wang, G. H.; Duh, C. Y. J. Nat. Prod. 2000, 63, 1603. https://doi.org/10.1107/S1600536808001402
  8. Wright, A. E.; Rueth, S. A.; Cross, S. S. J. Nat. Prod. 1991, 4, 1108. https://doi.org/10.1021/np000271n
  9. Liu, L. J.; Yong, J. P.; Wang, J. W. Chem. J. Chin. Universities 2006, 27, 1669.
  10. Um, S. J.; Park, M. S.; Park, S. H.; Han, H. S.; Kwon, Y. J.;Sin, H. S. Bioorg. Med. Chem. 2003, 11, 5345. https://doi.org/10.1016/j.bmc.2003.09.046
  11. Byung, J. M.; Jong, W. C.; Oh, S. K. J. Korean Chem. Soc. 1991, 35, 78. https://doi.org/10.1016/j.bmc.2003.09.046
  12. Soon, U. K.; Nam, J. H. J. Korean Chem. Soc. 1987, 31, 475.
  13. Smee, D. F.; Huffman, J. H.; Morrison, A. C.; Barnard, D. L.;Sidwell, R. W. Antimicrob. Agents Chemotherapy 2001, 45, 743. https://doi.org/10.1128/AAC.45.3.743-748.2001
  14. Reed, L. J.; Muench, H. Am. J. Hyg. 1938, 27, 493. https://doi.org/10.1128/AAC.45.3.743-748.2001

Cited by

  1. Synthesis of isoxazole moiety containing ferrocene derivatives and preliminarily in vitro anticancer activity vol.5, pp.7, 2014, https://doi.org/10.1039/c4md00151f
  2. Synthesis of Rupestonic Acid Derivatives with Antiviral Activity vol.53, pp.2, 2017, https://doi.org/10.1007/s10600-017-1970-y