References
- Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Discov. 2004, 3, 1023 https://doi.org/10.1038/nrd1576
- Uekama, K. Chem. Pharm. Bull. (Tokyo) 2004, 52, 900 https://doi.org/10.1248/cpb.52.900
- Felsenfeld, G.; Miles, H. T. Annu. Rev. Biochem. 1967, 36, 407 https://doi.org/10.1146/annurev.bi.36.070167.002203
- el-Moatassim, C.; Dornand, J.; Mani, J. C. Biochim. Biophys. Acta 1992, 1134, 31 https://doi.org/10.1016/0167-4889(92)90025-7
- Kahn, B. B.; Alquier, T.; Carling, D.; Hardie, D. G. Cell Metab. 2005, 1, 15 https://doi.org/10.1016/j.cmet.2004.12.003
- Burnstock, G. Cell Mol. Life Sci. 2007, 64, 1471 https://doi.org/10.1007/s00018-007-6497-0
- Formoso, C. Biochem. Biophys. Res. Commun. 1973, 50, 999 https://doi.org/10.1016/0006-291X(73)91505-2
- Seno, M.; Lin, M. L.; Iwamoto, K. J. Chromatogr. 1990, 523, 293 https://doi.org/10.1016/0021-9673(90)85032-Q
- Kondo, M.; Nishikawa, S. J. Phys. Chem. B 2007, 111, 13451 https://doi.org/10.1021/jp074555t
- Barnes, C.; Evans, J. A.; Lewis, T. J. J. Acoust. Soc. Am. 1988, 83, 2393 https://doi.org/10.1121/1.396318
- Choi, P. K.; Bae, J. R.; Takagi, K. J. Acoust. Soc. Am. 1990, 87, 874 https://doi.org/10.1121/1.398897
- Matheson, A. J. Molecular Acoustics; Wiley-Interscience: London, 1971
- Takagi, K. Ultrasonic Handbook; Maruzen: Tokyo, 1999
- Debye, P. Trans. Electrochem. Soc. 1942, 82, 265 https://doi.org/10.1149/1.3071413
- Suzuki, I.; Miura, T.; Anzai, J. J. Supramol. Chem. 2001, 1, 283 https://doi.org/10.1016/S1472-7862(02)00065-5
- Inbe, H.; Watanabe, S.; Miyawaki, M.; Tanabe, E.; Encinas, J. A. J. Biol. Chem. 2004, 279, 19790 https://doi.org/10.1074/jbc.M400360200
Cited by
- Thermodynamics of noncovalent interactions in hydrophobically-substituted water-soluble polymers from intrinsic viscosity measurements: Application to nucleobase-substituted pullulans vol.123, pp.2, 2011, https://doi.org/10.1002/app.34480
- Disease Detection and Management via Single Nanopore-Based Sensors vol.112, pp.12, 2012, https://doi.org/10.1021/cr300381m
- Study of the dynamic complex formation of pentanoic acid with β-cyclodextrin by using an ultrasonic relaxation method vol.63, pp.2, 2013, https://doi.org/10.3938/jkps.63.193
- Ultrasonic Absorption Measurements of Propionic Acid Derivatives of NSAID and β-Cyclodextrin in Aqueous Solution vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10778
- Why does β-cyclodextrin prefer to bind nucleotides with an adenine base rather than other 2′-deoxyribonucleoside 5′-monophosphates? vol.23, pp.4, 2017, https://doi.org/10.1007/s00894-017-3325-9
- Electrospray Ionization Mass Spectrometric Analysis of Noncovalent Complexes of Hydroxypropyl-β-cyclodextrin and β-Cyclodextrin with Progesterone vol.30, pp.8, 2009, https://doi.org/10.5012/bkcs.2009.30.8.1864
- Acoustical Spectroscopy of Carbohydrate Aqueous Solutions: Saccharides; Alkyl Glycosides; Cyclodextrins. Part I. Conformer Variations vol.35, pp.4, 2009, https://doi.org/10.2478/v10168-010-0054-9
- Acoustical Spectroscopy of Carbohydrate Aqueous Solutions: Saccharides; Alkyl Glycosides; Cyclodextrins. Part II. Association and Complexation vol.35, pp.4, 2010, https://doi.org/10.2478/v10168-010-0055-8
- Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation vol.31, pp.2, 2010, https://doi.org/10.5012/bkcs.2010.31.02.442
- Ultrasonic Relaxation for Complexation Reaction Between β-Cyclodextrin and Butanoic Acid in Aqueous Solution vol.31, pp.2, 2009, https://doi.org/10.7776/ask.2012.31.2.100
- 벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화 vol.36, pp.6, 2009, https://doi.org/10.7776/ask.2017.36.6.387