DOI QR코드

DOI QR Code

Pharmacophore Mapping and Virtual Screening for SIRT1 Activators

  • Sakkiah, Sugunadevi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Krishnamoorthy, Navaneethakrishnan (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Gajendrarao, Poornima (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Thangapandian, Sundarapandian (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Lee, Yun-O (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Kim, Song-Mi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC)) ;
  • Suh, Jung-Keun (Bio Computing Major, Korean German Institute of Technology) ;
  • Kim, Hyong-Ha (Division of Quality of Life, Center of Bioanalysis, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC))
  • Published : 2009.05.20

Abstract

Silent information regulator 2 (Sir2) or sirtuins are NAD(+)-dependent deacetylases, which hydrolyze the acetyllysine residues. In mammals, sirtuins are classified into seven different classes (SIRT1-7). SIRT1 was reported to be involved in age related disorders like obesity, metabolic syndrome, type II diabetes mellitus and Parkinson’s disease. Activation of SIRT1 is one of the promising approaches to treat these age related diseases. In this study, we have used HipHop module of CATALYST to identify a series of pharmacophore models to screen SIRT1 enhancing molecules. Three molecules from Sirtris Pharmaceuticals were selected as training set and 607 sirtuin activator molecules were used as test set. Five different hypotheses were developed and then validated using the training set and the test set. The results showed that the best pharmacophore model has four features, ring aromatic, positive ionization and two hydrogen-bond acceptors. The best hypothesis from our study, Hypo2, screened high number of active molecules from the test set. Thus, we suggest that this four feature pharmacophore model could be helpful to screen novel SIRT1 activator molecules. Hypo2-virtual screening against Maybridge database reveals seven molecules, which contains all the critical features. Moreover, two new scaffolds were identified from this study. These scaffolds may be a potent lead for the SIRT1 activation.

Keywords

References

  1. Ekwall, K. Trends Genet. 2005, 11, 608-615
  2. Guarente, L. Genes & Dev. 2000, 14, 1021-1026
  3. Brain, S. C.; John, D. M. Biochemistry 2006, 45, 272-282 https://doi.org/10.1021/bi052014t
  4. North, B. J.; Marshall, B. L.; Borra, M. T.; Denu, J. M.; Verdin, E. Mol. Cell 2003, 11, 437-444 https://doi.org/10.1016/S1097-2765(03)00038-8
  5. Westphal, C. H.; Dipp, M. A.; Guarente, L. Trends in Biomedical Sciences 2007, 32, 555-560 https://doi.org/10.1016/j.tibs.2007.09.008
  6. Olesya, V.; Christian, S.; Praveen, G.; Sawa, K.; Thomas, B.; Thomas, K.; Thomas, B.; Eva, B. Circulation Research 2008, 102, 703-710 https://doi.org/10.1161/CIRCRESAHA.107.164558
  7. Ethan, F.; Renate, V.; Gregory, L.; Cornelia Magin, I. G.; Leonard, G. Genes and development 2006, 20, 1075-1080 https://doi.org/10.1101/gad.1399706
  8. Jill, C.; Philip, D.; Simon, S.; David, P.; Jesse, J.; David, J.; Lei, J.; Olivier, B.; Robert, B.; Chi, B.; Pui, Y. N. Nature Letter 2007, 450, 712-716 https://doi.org/10.1038/nature06261
  9. Bjoern, S.; Eric, V. Cell Metabolism Review 2008, 7, 104-112 https://doi.org/10.1016/j.cmet.2007.11.006
  10. Michael, S. F.; Jill, R. D.; Nikola, P. D. Nature 2001, 410, 227-230 https://doi.org/10.1038/35065638
  11. Jill, C. M.; Philip, D. L.; Simon, S.; David, P. C.; Jesse, J. S.; David, J. G.; Lei, J.; Olivier, B.; Robert, B. P.; Chi, B. V.; Jean, E. B.; Roger, X.; Jeremy, S. D.; Pui, Y. N.; Joseph, J. N.; Amy, V. L.; Hongying, Y.; Heidi, G.; Kristine, I.; Wendy, C.; Andre, I.; Siva, L.; Oliver, M.; David, A. S.; Jerrold, M. O.; Michael, R. J.; Peter, J. E.; Christoph, H. W. Nature Letter. 2007, 450, 712-716 https://doi.org/10.1038/nature06261
  12. Jill, C.; John, M. Current Opinion in Chemical Biology 2008, 12, 11-17 https://doi.org/10.1016/j.cbpa.2008.01.019
  13. Porcu, M.; Chiarugi, A. Trends Pharmacol. Sci. 2005, 26, 94-103 https://doi.org/10.1016/j.tips.2004.12.009
  14. Westphal. C. H.; Dipp, M. A.; Guarente, L. Trends in Biomedical Sciences 2001, 32, 937-944
  15. Konrad, T.; Kevin, J.; Haim, Y.; Dudley, W.; Jason, G.; Robert E.; David, A. Nature 2003, 425, 191-196 https://doi.org/10.1038/nature01960
  16. Kaeberlein, M.; McDonagh, T.; Heltweg, B.; Hixon, J.; Westman, E. A.; Caldwell, S. D.; Napper, A.; Curtis, R.; DiStefano, P. S.; Fields, S.; Bedalov, A.; Kennedy, B. K.; Denu, J. M.; J. Biol. Chem. 2005, 280, 17038-17045 https://doi.org/10.1074/jbc.M500655200
  17. Margie, T.; Brain, C.; John, M. J. Biol. Chem. 2005, 280, 17187-17195 https://doi.org/10.1074/jbc.M501250200
  18. Peter, J.; Michael, J. Sirtuins Current Opinion in Investigational Drugs 2008, 4, 371-378
  19. Catalyst, version 4.10; Accelrys Inc.: SanDiego, California, USA, 2005
  20. Jill, C.; Philip, D.; Simon, S.; David, P.; Jesse, J.; David, J.; Lei, J.; Olivier, B.; Robert, B.; Chi, B.; Jean, E.; Roger, X.; Jeremy, S. Nature Letter 2007, 450, 712-716 https://doi.org/10.1038/nature06261
  21. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMMM J. Comput. Chem. 1983, 4, 187-217 https://doi.org/10.1002/jcc.540040211
  22. Yu, H.; Wang, Z.; Zhang, L.; Huang, Q. Chem. Biol. Drug Des. 2007, 69, 204-211 https://doi.org/10.1111/j.1747-0285.2007.00488.x
  23. Vadivelan, S.; Sinha, B. N.; Irudayam, S. J.; Jagarlapudi, S. S. R. P. J. Chem. Inf. Model 2007, 47, 1526-1535 https://doi.org/10.1021/ci7000742
  24. Yu, H.; Wang, Z.; Zhang, L.; Zhang, J.; Huang, Q. Bioorg. Med. Chem. Lett. 2007, 17, 2126-2133 https://doi.org/10.1016/j.bmcl.2007.01.089
  25. Yuno, L.; Nagakumar, B.; Kavitha, B.; Keun, W. L. Bull. Korean Chem. Soc. 2007, 28, 561-566 https://doi.org/10.5012/bkcs.2007.28.4.561
  26. Won-Seok, O.; Hang-Cheol, S.; Nak-Cheol, J.; Jae-Min, S. Bull. Korean Chem. Soc. 1996, 17, 182-188
  27. Egan, J.; Merz, M.; Baldwin, J. J. Med. Chem. 2000, 43, 3867-3877 https://doi.org/10.1021/jm000292e
  28. Akinori, H.; Masako, M.; Hiroti, O.; Eiichi, K.; Eiji, T.; Morifusa, E. Int. J. Mol. Sci. 2002, 3, 56-68 https://doi.org/10.3390/i3020056

Cited by

  1. Molecular modeling study for conformational changes of Sirtuin 2 due to substrate and inhibitor binding vol.30, pp.3, 2012, https://doi.org/10.1080/07391102.2012.680026
  2. Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1707
  3. Ligand-Based Virtual Screening and Molecular Docking Studies to Identify the Critical Chemical Features of Potent Cathepsin D Inhibitors vol.80, pp.1, 2012, https://doi.org/10.1111/j.1747-0285.2012.01339.x
  4. Molecular Docking and Dynamics Simulation, Receptor-based Hypothesis: Application to Identify Novel Sirtuin 2 Inhibitors vol.80, pp.2, 2012, https://doi.org/10.1111/j.1747-0285.2012.01406.x
  5. Theoretical approaches to identify the potent scaffold for human sirtuin1 activator: Bayesian modeling and density functional theory vol.23, pp.9, 2014, https://doi.org/10.1007/s00044-014-0983-3
  6. Molecular modelling studies of sirtuin 2 inhibitors using three-dimensional structure–activity relationship analysis and molecular dynamics simulations vol.11, pp.3, 2015, https://doi.org/10.1039/C4MB00620H
  7. Computational identification of JAK2 inhibitors: a combined pharmacophore mapping and molecular docking approach vol.24, pp.4, 2015, https://doi.org/10.1007/s00044-014-1223-6
  8. Structure-based pharmacophore design and virtual screening for novel potential inhibitors of epidermal growth factor receptor as an approach to breast cancer chemotherapy vol.22, pp.1, 2018, https://doi.org/10.1007/s11030-017-9799-7
  9. Computational prediction models for assessing endocrine disrupting potential of chemicals pp.1532-4095, 2018, https://doi.org/10.1080/10590501.2018.1537132
  10. Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor vol.31, pp.1, 2009, https://doi.org/10.5012/bkcs.2010.31.01.052
  11. Pharmacophore Design for Anti-inflammatory Agent Targeting Interleukin-2 Inducible Tyrosine Kinase (Itk) vol.31, pp.11, 2009, https://doi.org/10.5012/bkcs.2010.31.11.3333
  12. Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors vol.1011, pp.None, 2009, https://doi.org/10.1016/j.molstruc.2011.08.037