DOI QR코드

DOI QR Code

B3(Fab)-streptavidin Tetramer Has Higher Binding Avidity than B3(scFv)-streptavidin Tetramer

  • Won, Jae-Seon (Collegeof Life Sciences and Graduate School of Biotechnology, Korea University) ;
  • Kang, Hye-Won (Collegeof Life Sciences and Graduate School of Biotechnology, Korea University) ;
  • Nam, Pil-Won (Collegeof Life Sciences and Graduate School of Biotechnology, Korea University) ;
  • Choe, Mu-Hyeon (Collegeof Life Sciences and Graduate School of Biotechnology, Korea University)
  • Published : 2009.05.20

Abstract

Multivalent and multi-specific antibodies can provide valuable tools for bio-medical research, diagnosis and therapy. In antigen-antibody interactions, the avidity of antibodies depends on the affinity and the number of binding sites.$^1$ As artificial multivalent antibody agents, single chain Fv-streptavidin fusion tetramer proteins $(scFv-SA)_4$ have been previously tested.$^{1,\;2}$ Although, the Fab domain is known to be more stable than scFv in animal models,$^{3,\;4}$ it has never been used to make a multivalent agent with a streptavidin fusion. In this study, we prepared tetra-valent $(Fab-cSA)_4$ by fusing Fab with core streptavidin (cSA). This molecule was made using inclusion body production, refolding and chromatography purification. Affinities of the Fab-cSA tetramer and a scFv-cSA tetramer to a cell surface antigen were compared by ELISA using biotin-HRP. The Fab-cSA tetramer showed higher binding avidity than the scFv-cSA tetramer. The higher binding avidity of the Fab-cSA tetramer demonstrates its potential as a therapeutic agent for target-specific antibody therapy.

Keywords

References

  1. Kipriyanov, S. M.; Little, M.; Kropshofer, H.; Breitling, F.; Gotter, S.; Dübel, S. Protein Eng. 1996, 9, 203 https://doi.org/10.1093/protein/9.2.203
  2. Lin, Y.; Pagel, J. M.; Axworthy, D.; Pantelias, A.; Hedin, N.; Press, O. W. Cancer Res. 2006, 66, 3884 https://doi.org/10.1158/0008-5472.CAN-05-3443
  3. Wu, A. M.; Senter, P. D. Nat. Biotechnol. 2005, 23, 1137 https://doi.org/10.1038/nbt1141
  4. Choe, M.; Webber, K. O.; Pastan, I. Cancer Res. 1994, 54, 3460
  5. Hudson, P. J.; Kortt, A. A. J. Immunol. Methods 1999, 231, 177 https://doi.org/10.1016/S0022-1759(99)00157-X
  6. Dall'acqua, W.; Carter, P. Curr. Opin. Struct. Biol. 1998, 8, 443 https://doi.org/10.1016/S0959-440X(98)80121-8
  7. Pluckthun, A.; Pack, P. Immunotechnology 1997, 3, 83 https://doi.org/10.1016/S1380-2933(97)00067-5
  8. Kortt, A. A.; Lah, M.; Oddie, G. W.; Gruen, C. L.; Burns, J. E.; Pearce, L. A.; Atwell, J. L.; Mccoy, A. J.; Howlett, G. J.; Metzger, D. W.; Webster, R. G.; Hudson, P. J. Protein Eng. 1997, 10, 423 https://doi.org/10.1093/protein/10.4.423
  9. Huston, J. S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M. S.; Novotny, J.; Margolies, M. N.; Ridge, R. J.; Bruccoleri, R. E.; Haber, E.; Crea, R.; Al, E. Proc. Natl. Acad. Sci. USA 1988, 85, 5879 https://doi.org/10.1073/pnas.85.16.5879
  10. Brinkmann, U.; Pai, L. H.; Fitzgerald, D. J.; Willingham, M.; Pastan, I. Proc. Natl. Acad. Sci. USA 1991, 88, 8616 https://doi.org/10.1073/pnas.88.19.8616
  11. Buchner, J.; Pastan, I.; Brinkmann, U. Anal. Biochem. 1992, 205, 263 https://doi.org/10.1016/0003-2697(92)90433-8
  12. Benhar, I.; Pastan, I. Clin. Cancer Res. 1995, 1, 1023
  13. Buchner, J.; Rudolph, R. Biotechnology (N Y) 1991, 9, 157 https://doi.org/10.1038/nbt0291-157
  14. Derocq, J. M.; Casellas, P.; Laurent, G.; Ravel, S. Vidal, H.; Jansen, F. J. Immunol. 1988, 141, 2837
  15. Saito, T.; Kreitman, R. J.; Hanada, S.; Makino, T.; Utsunomiya, A.; Sumizawa, T.; Arima, T.; Chang, C. N.; Hudson, D.; Pastan, I. et al. Cancer Res. 1994, 54, 1059
  16. Green, N. M. Methods Enzymol. 1990, 184, 51 https://doi.org/10.1016/0076-6879(90)84259-J
  17. Sano, T.; Pandori, M. W.; Chen, X.; Smith, C. L.; Cantor, C. R. J. Biol. Chem. 1995, 270, 28204
  18. Bayer, E. A.; Ben-Hur, H.; Hiller, Y.; Wilchek, M. Biochem. J. 1989, 259, 369
  19. Argarana, C. E.; Kuntz, I. D.; Birken, S.; Axel, R.; Cantor, C. R. Nucleic Acids Res. 1986, 14, 1871 https://doi.org/10.1093/nar/14.4.1871
  20. P$\ddot{a}$hler, A.; Hendrickson, W. A.; Kolks, M. A.; Argarana, C. E.; Cantor, C. R. J. Biol. Chem. 1987, 262, 13933
  21. Pastan, I.; Lovelace, E. T.; Gallo, M. G.; Rutherford, A. V.; Magnani, J. L.; Willingham, M. C. Cancer Res. 1991, 51, 3781
  22. Pai, L. H.; Batra, J. K.; Fitzgerald, D. J.; Willingham, M. C.; Pastan, I. Proc. Natl. Acad. Sci. USA 1991, 88, 3358 https://doi.org/10.1073/pnas.88.8.3358
  23. Pai, L. H.; Batra, J. K.; Fitzgerald, D. J.; Willingham, M. C.; Pastan, I. Cancer Res. 1992, 52, 3189
  24. Brinkmann, U.; Lee, B. K.; Pastan, I. J. Immunol. 1993, 150, 2774
  25. Jung, S. H.; Pastan, I.; Lee, B. Proteins 1994, 19, 35 https://doi.org/10.1002/prot.340190106
  26. Choi, S. H.; Kim, J. E.; Lee, Y. C.; Jang, Y. J.; Pastan, I.; Choe, M. H. Bull. Kor. Chem. Soc. 2001, 22, 1361
  27. Wang, J. L.; Zheng, Y. L.; Ma, R.; Wang, B. L.; Guo, A. G.; Jiang, Y. Q. World J. Gastroenterol 2005, 11, 4899
  28. Brinkmann, U.; Buchner, J.; Pastan, I. Proc. Natl. Acad. Sci. USA 1992, 89, 3075 https://doi.org/10.1073/pnas.89.7.3075
  29. Bj$\ddot{o}$rck, L.; Kronvall, G. J. Immunol. 1984, 133, 969
  30. Bj$\ddot{o}$rck, L. J. Immunol. 1988, 140, 1194
  31. Schultz, J.; Lin, Y.; Sanderson, J.; Zuo, Y.; Stone, D.; Mallett, R.; Wilbert, S.; Axworthy, D. Cancer Res. 2000, 60, 6663
  32. An, S. A. A.; Suh, I. Bull. Kor. Chem. Soc. 2008, 29, 2209
  33. Colcher, D.; Bird, R.; Roselli, M.; Hardman, K. D.; Johnson, S.; Pope, S.; Dodd, S. W.; Pantoliano, M. W.; Milenic, D. E.; Schlom, J. J. Natl. Cancer Inst. 1990, 82, 1191 https://doi.org/10.1093/jnci/82.14.1191
  34. Bera, T. K.; Pastan, I. Bioconjug. Chem. 1998, 9, 736 https://doi.org/10.1021/bc980028o
  35. Lee, D. Y.; Kim, M. K.; Kim, M. J.; Bhattarai, B. R.; Kafle, B.; Lee, K. H.; Kang, J. S.; Cho, H. J. Bull. Kor. Chem. Soc. 2008, 29, 342 https://doi.org/10.5012/bkcs.2008.29.2.342