DOI QR코드

DOI QR Code

Chirality Conversion of Dipeptides in the Schiff Bases of Binol Aldehydes with Multiple Hydrogen Bond Donors

  • Park, Hyun-Jung (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Hong, Joo-Yeon (Department of Chemistry, Sookmyung Women’s University) ;
  • Ham, Si-Hyun (Department of Chemistry, Sookmyung Women’s University) ;
  • Nandhakumar, Raju (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University) ;
  • Kim, Kwan-Mook (Bio-Chiral Lab, Department of Chemistry and Nano Sciences, Ewha Womans University)
  • Published : 2009.02.20

Abstract

Novel binol aldehydes derivatized at 2' hydroxy position with both uryl and acetamide groups (2), and diuryl groups (3) have been synthesized. Both were designed for streospecific binding and chirality conversion of general dipeptides with support of multiple hydrogen bonding donor sites in the receptors. The receptors, 2 and 3, converted the chirality of N-terminal amino acids of peptides such as Ala-Gly, Met-Gly, Leu-Gly and His-Gly with stereoselectivity on D-form over L-form. The stereoselectivity ratios were in the range of 5-11, somewhat higher than those of the binol receptor with mono uryl group (1). The DFT calculation at the B3LYP/6-31G$^*$//MPWB1K/6-31G$^*$ level revealed that 3-D-Ala-Gly was 2.2 kcal/mol more stable than 3-L-Ala-Gly. The considerable steric hindrance between the methyl group of the alanine and the imine CH moiety of the receptor seems to be the main contributing factor for the thermodynamic preference.

Keywords

References

  1. Kim, H.; Kang, J. Bull. Kor. Chem. Soc. 2006, 27, 1791 https://doi.org/10.5012/bkcs.2006.27.11.1791
  2. Osawa, T.; Shirasaka, K.; Matsui, T.; Yoshihara, S.; Akiyama, T.; Hishiya, T.; Asanuma, H.; Komiyama, M. Macromolecules 2006, 39, 2460; https://doi.org/10.1021/ma060064f
  3. Folmer-Andersen, J. F.; Lynch, V. M.;Anslyn, E. V. J. Am. Chem. Soc. 2005, 127, 7986 https://doi.org/10.1021/ja052029e
  4. Breccia, P.;Van Gool, M.; Pérez-Fernández, R.; Martin-Santamaria, S.;Gago, F.; Prados, P.; Mendoza, J. J. Am. Chem. Soc. 2003, 125, 8270 https://doi.org/10.1021/ja026860s
  5. Oliva, A. I.; Simon, L.; Hernandez, J. V.; Muniz, F. M.;Lithgow, A.; Jimenez, A.; Moran, J. R. J. Chem. Soc., Perkin Trans. 2 2002, 1050
  6. Tsubaki, K.; Tanima, D.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K.; Kawabata, T. J. Org. Chem. 2005, 70, 4609 https://doi.org/10.1021/jo050387u
  7. Famulok, M. Science 1996, 272, 1343 https://doi.org/10.1126/science.272.5266.1343
  8. Chin, J.;Lee, S. S.; Lee, K. J.; Park, S.; Kim, D. H. Nature 1999, 401, 254. https://doi.org/10.1038/45751
  9. Wang, Q.; Chen, X.; Tao, L.; Wang, L.; Xiao, D.; Yu, X.-Q.;Pu, L. J. Org. Chem. 2007, 72, 97 https://doi.org/10.1021/jo061769i
  10. Nandhakumar, R.; Guo, Y.-N.; Park, H.; Tang, L.; Nam, W.; Kim, K. M. Tetrahedron Lett. 2007, 48, 6582 https://doi.org/10.1016/j.tetlet.2007.07.037
  11. Dai, Z.; Xu, X.; Canary, J. W. Chirality 2005, 17, S227 https://doi.org/10.1002/chir.20130
  12. Lee, S. J.; Lin, W. J. Am. Chem. Soc. 2002, 124, 4554 https://doi.org/10.1021/ja0256257
  13. Liu, Y.; Li, B.; Wada, T.; Inoue, Y. Tetrahedron 2001, 57, 7153. https://doi.org/10.1016/S0040-4020(01)00671-8
  14. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis:Construction of Chiral Molecules Using Amino Acids; Wiley:New York, NY, 1987
  15. Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994
  16. Bergmeier, S. C. Tetrahedron 2000, 56, 2561 https://doi.org/10.1016/S0040-4020(00)00149-6
  17. Ager, D. J.;Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835 https://doi.org/10.1021/cr9500038
  18. Kazlauskas, R. J. Nature Chemical Biology 2006, 2, 514 https://doi.org/10.1038/nchembio1006-514
  19. Nandanwar, H. S.; Hoondal, G. S.; Vohra, R. M. Microbial Enzymes and Biotransformations 2005, 17, 91.
  20. Shaw, J. P.; Petsko, G. A.; Ringe, D. Biochemistry 1997, 36, 1329 https://doi.org/10.1021/bi961856c
  21. Walsh, C. T. J. Biol. Chem. 1989, 264, 23936.
  22. Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem.Soc. 2000, 122, 10405 https://doi.org/10.1021/ja000921+
  23. Kim, H.-J.; Kim, W.; Lough, A. J.;Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2005, 127, 16776. https://doi.org/10.1021/ja0557785
  24. Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 127, 1518
  25. Kim, K. M.; Park, H.; Kim, H.-J.; Chin, J.; Nam, W. Org. Lett. 2005, 7, 3525. https://doi.org/10.1021/ol051267b
  26. Tang, L.; Ga, H.; Kim, J.; Choi, S.; Nandhakumar, R.; Kim, K. M. Tetrahedron Lett. 2008, 49, 6914 https://doi.org/10.1016/j.tetlet.2008.09.117
  27. Nandhakumar, R.;Ryu, J.; Park, H.; Tang, L.; Choi, S.; Kim, K. M. Tetrahedron 2008, 64, 7704. https://doi.org/10.1016/j.tet.2008.06.029
  28. Tokunaga, K.; Yoshida, C.; Suzuki, K.; Maruyama, H.;Futamura, Y.; Araki, Y.; Mishima, S. Biol. Pharm. Bull. 2004, 27, 189 https://doi.org/10.1248/bpb.27.189
  29. Satoh, M.; Kawajiri, S.; Yamamoto, M.; Akaike, A.;Ukai, Y.; Takagi, H. Neuroscience Lett. 1980, 16, 319. https://doi.org/10.1016/0304-3940(80)90018-X
  30. Park, H.; Nandhakumar, R.; Hong, J.; Ham, S.; Chin, J.; Kim, K. M. Chem. Eur. J. 2008, 14, 9935. https://doi.org/10.1002/chem.200801036
  31. Tang, L.; Choi, S.; Nandhakumar, R.; Park, H.; Chung, H.; Chin, J.; Kim, K. M. J. Org. Chem. 2008, 73, 5996. https://doi.org/10.1021/jo800670t
  32. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  33. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908. https://doi.org/10.1021/jp048147q
  34. Gaussian 03, Revision D.02; Gaussian Inc.: Pittsburgh PA, 2004.

Cited by

  1. The Chirality Conversion Reagent for Amino Acids Based on Salicyl Aldehyde vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1715
  2. Binol Based Chirality Conversion Reagents for Underivatized Amino Acids vol.04, pp.01, 2014, https://doi.org/10.4236/ijoc.2014.41006
  3. A Novel Dimeric BINOL for Enantioselective Recognition of 1,2-Amino Alcohols vol.32, pp.11, 2014, https://doi.org/10.1002/cjoc.201400321
  4. Stereoselective Recognition of Amino Alcohols and Amino Acids by Carbonylurea- and Carbonyguanidinium-based Imine Receptors vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2938
  5. Synthesis of Novel H8-Binaphthol-based Chiral Receptors and Their Applications in Enantioselective Recognition of 1,2-Amino alcohols and Chirality Conversion of L-Amino acids to D-Amino aci vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1289
  6. Enantioselective Recognition of Amino Alcohols and Amino Acids by Chiral Binol-Based Aldehydes with Conjugated Rings at the Hydrogen Bonding Donor Sites vol.32, pp.4, 2009, https://doi.org/10.5012/bkcs.2011.32.4.1263