DOI QR코드

DOI QR Code

Energy Band Structure and Photocatalytic Property of Fe-doped Zn2TiO4 Material

  • Jang, Jum-Suk (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Borse, Pramod H. (Department of Chemical Engineering, Pohang University of Science and Technology,Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials(ARC International)) ;
  • Lee, Jae-Sung (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lim, Kwon-Taek (Department of Imaging System Engineering, Pukyong National University) ;
  • Jung, Ok-Sang (Department of Chemistry (BK21), Pusan National University) ;
  • Jeong, Euh-Duck (Busan Center, Korea Basic Science Institute) ;
  • Bae, Jong-Seong (Busan Center, Korea Basic Science Institute) ;
  • Won, Mi-Sook (Busan Center, Korea Basic Science Institute) ;
  • Kim, Hyun-Gyu (Busan Center, Korea Basic Science Institute)
  • Published : 2009.12.20

Abstract

$Zn_2Ti_{1-x}Fe_xO_4\;(0\;{\leq}\;x\;{\leq}\;0.7)$ photocatalysts were synthesized by polymerized complex (PC) method and investigated for its physico-chemical as well as optical properties. $Zn_2Ti_{1-x}Fe_xO_4$ can absorb not only UV light but also visible light region due to doping of Fe in the Ti site of $Zn_2TiO_4$ lattice because of the band transition from Fe 3d to the Fe 3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $Zn_2TiO_4$ samples for hydrogen production under UV light irradiation decreased with an increase in Fe concentration in $Zn_2TiO_4$. Consequently, there exists an optimized concentration of iron for improved photocatalytic activity under visible light (${\lambda}{\leq}$420 nm)

Keywords

References

  1. Lee, J. S. Catal. Surv. Asia. 2005, 9, 217 https://doi.org/10.1007/s10563-005-9157-0
  2. Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253 https://doi.org/10.1039/b800489g
  3. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286 https://doi.org/10.1021/ja0518777
  4. Kim, H. G.; Hwang, D. W.; Lee, J. S.; J. Am. Chem. Soc. 2004, 126, 8913
  5. Jang, J. S.; Ji, S. M.; Bae, S. W.; Son, H. C.; Lee, J. S. J. Photochem. Photobiol. A: Chem. 2007, 188, 112 https://doi.org/10.1016/j.jphotochem.2006.11.027
  6. Matsumoto, Y. J. Solid State Chem. 1996, 126, 227 https://doi.org/10.1006/jssc.1996.0333
  7. Hwang, D. W.; Kim, H. G.; Lee, J. S.; Kim, J.; Li, W.; Oh,S. H.; J. Phys. Chem. 2005, B109, 2093 https://doi.org/10.1021/jp0493226
  8. Kim, S. W.; Khan, R.; Kim, T. J.; Kim, W. Bull. Korean Chem. Soc. 2008, 29, 1217 https://doi.org/10.5012/bkcs.2008.29.6.1217
  9. Bae, S. W.; Borse, P. H.; Lee, J. S. Appl. Phys. Lett. 2008, 92, 104107 https://doi.org/10.1063/1.2897300
  10. Bae, S. W.; Borse, P. H.; Hong, S. J.; Jang, J. S.; Lee, J. S.; Jeong, E. D.; Hong, T. E.; Yoon, J. H.; Jin, J. S.; Kim, H. G. J. Korean Phys. Soc. 2007, 51, S22 https://doi.org/10.3938/jkps.51.22
  11. Subramanian, E.; Baeg, J.; Kale, B. B.; Lee, S. M.; Moon, S.; Kong, K. Bull. Korean Chem. Soc. 2007, 28, 2089 https://doi.org/10.5012/bkcs.2007.28.11.2089
  12. Khan, S. U.; Al-Shahry, M. M.; Ingler, Jr., W. B. Science 2002, 297, 2243 https://doi.org/10.1126/science.1075035
  13. Sakthivel, S.; Kisch, H.; Angew. Chem. Int. Ed. 2003, 42, 4908 https://doi.org/10.1002/anie.200351577
  14. Ashai, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
  15. Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91, 193 https://doi.org/10.1023/B:CATL.0000007154.30343.23
  16. Jung, E. D.; Borse, P. H.; Jang, J. S.; Lee, J. S.; Cho, C. R.; Bae, J. S.; Park, S.; Jung, O. S.; Ryu, S. M.; Kim, H. G. J. Nanosci. Nanotech. 2008, 9, 3568 https://doi.org/10.1166/jnn.2009.NS31
  17. Jang, J. S.; Kim, H. G.; Ji, S. M.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1067 https://doi.org/10.1016/j.jssc.2006.01.004
  18. Rankin, R. B.; Campos, A.; Tian, H.; Siriwardane, R.; Roy, A.; Spivey, J. J.; Sholl, D. S.; Johnson, J. K. J. Am. Ceram. Soc. 2008, 91, 584 https://doi.org/10.1111/j.1551-2916.2007.02186.x

Cited by

  1. Crystallization and Phase-Transition Characteristics of Sol−Gel-Synthesized Zinc Titanates vol.23, pp.6, 2011, https://doi.org/10.1021/cm1031688
  2. Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films vol.108, pp.2, 2012, https://doi.org/10.1007/s00339-012-6890-x
  3. Molten-Salt-Assisted Self-Assembly (MASA)-Synthesis of Mesoporous Metal Titanate-Titania, Metal Sulfide-Titania, and Metal Selenide-Titania Thin Films vol.23, pp.32, 2013, https://doi.org/10.1002/adfm.201202716
  4. Enhanced hydrogen production under a visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates vol.39, pp.5, 2015, https://doi.org/10.1039/C4NJ01995D
  5. Gaseous benzene degradation by photocatalysis using ZnO + Zn2TiO4 thin films obtained by sol-gel process vol.23, pp.13, 2016, https://doi.org/10.1007/s11356-016-6438-2
  6. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti–Zn–O system vol.45, pp.4, 2016, https://doi.org/10.1039/C5DT04145G
  7. Optical and Structural Properties of Zn2TiO4:Mn2+ vol.46, pp.12, 2017, https://doi.org/10.1007/s11664-017-5742-z
  8. nanophosphor for wLEDs vol.3, pp.7, 2016, https://doi.org/10.1088/2053-1591/3/7/075015
  9. Facile synthesis and photocatalytic activity of ZnO/zinc titanate core–shell nanorod arrays vol.5, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaa938
  10. nanoparticles vol.39, pp.12, 2019, https://doi.org/10.1088/1674-4926/39/12/123002
  11. Investigation on the electrical and optical properties of some zinc titanate ceramics vol.92, pp.3, 2019, https://doi.org/10.1007/s12043-018-1694-y
  12. Synthesis of Zn 2 TiO 4 @CdS Core‐shell Heteronanostructures by Novel Thermal Decomposition Approach for Photocatalytic Application vol.4, pp.43, 2009, https://doi.org/10.1002/slct.201903544
  13. Comparative Study of Zn2Ti3O8 and ZnTiO3 Photocatalytic Properties for Hydrogen Production vol.10, pp.12, 2020, https://doi.org/10.3390/catal10121372