References
- Lee, J. S. Catal. Surv. Asia. 2005, 9, 217 https://doi.org/10.1007/s10563-005-9157-0
- Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253 https://doi.org/10.1039/b800489g
- Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286 https://doi.org/10.1021/ja0518777
- Kim, H. G.; Hwang, D. W.; Lee, J. S.; J. Am. Chem. Soc. 2004, 126, 8913
- Jang, J. S.; Ji, S. M.; Bae, S. W.; Son, H. C.; Lee, J. S. J. Photochem. Photobiol. A: Chem. 2007, 188, 112 https://doi.org/10.1016/j.jphotochem.2006.11.027
- Matsumoto, Y. J. Solid State Chem. 1996, 126, 227 https://doi.org/10.1006/jssc.1996.0333
- Hwang, D. W.; Kim, H. G.; Lee, J. S.; Kim, J.; Li, W.; Oh,S. H.; J. Phys. Chem. 2005, B109, 2093 https://doi.org/10.1021/jp0493226
- Kim, S. W.; Khan, R.; Kim, T. J.; Kim, W. Bull. Korean Chem. Soc. 2008, 29, 1217 https://doi.org/10.5012/bkcs.2008.29.6.1217
- Bae, S. W.; Borse, P. H.; Lee, J. S. Appl. Phys. Lett. 2008, 92, 104107 https://doi.org/10.1063/1.2897300
- Bae, S. W.; Borse, P. H.; Hong, S. J.; Jang, J. S.; Lee, J. S.; Jeong, E. D.; Hong, T. E.; Yoon, J. H.; Jin, J. S.; Kim, H. G. J. Korean Phys. Soc. 2007, 51, S22 https://doi.org/10.3938/jkps.51.22
- Subramanian, E.; Baeg, J.; Kale, B. B.; Lee, S. M.; Moon, S.; Kong, K. Bull. Korean Chem. Soc. 2007, 28, 2089 https://doi.org/10.5012/bkcs.2007.28.11.2089
- Khan, S. U.; Al-Shahry, M. M.; Ingler, Jr., W. B. Science 2002, 297, 2243 https://doi.org/10.1126/science.1075035
- Sakthivel, S.; Kisch, H.; Angew. Chem. Int. Ed. 2003, 42, 4908 https://doi.org/10.1002/anie.200351577
- Ashai, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
- Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91, 193 https://doi.org/10.1023/B:CATL.0000007154.30343.23
- Jung, E. D.; Borse, P. H.; Jang, J. S.; Lee, J. S.; Cho, C. R.; Bae, J. S.; Park, S.; Jung, O. S.; Ryu, S. M.; Kim, H. G. J. Nanosci. Nanotech. 2008, 9, 3568 https://doi.org/10.1166/jnn.2009.NS31
- Jang, J. S.; Kim, H. G.; Ji, S. M.; Bae, S. W.; Jung, J. H.; Shon, B. H.; Lee, J. S. J. Solid State Chem. 2006, 179, 1067 https://doi.org/10.1016/j.jssc.2006.01.004
- Rankin, R. B.; Campos, A.; Tian, H.; Siriwardane, R.; Roy, A.; Spivey, J. J.; Sholl, D. S.; Johnson, J. K. J. Am. Ceram. Soc. 2008, 91, 584 https://doi.org/10.1111/j.1551-2916.2007.02186.x
Cited by
- Crystallization and Phase-Transition Characteristics of Sol−Gel-Synthesized Zinc Titanates vol.23, pp.6, 2011, https://doi.org/10.1021/cm1031688
- Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films vol.108, pp.2, 2012, https://doi.org/10.1007/s00339-012-6890-x
- Molten-Salt-Assisted Self-Assembly (MASA)-Synthesis of Mesoporous Metal Titanate-Titania, Metal Sulfide-Titania, and Metal Selenide-Titania Thin Films vol.23, pp.32, 2013, https://doi.org/10.1002/adfm.201202716
- Enhanced hydrogen production under a visible light source and dye degradation under natural sunlight using nanostructured doped zinc orthotitanates vol.39, pp.5, 2015, https://doi.org/10.1039/C4NJ01995D
- Gaseous benzene degradation by photocatalysis using ZnO + Zn2TiO4 thin films obtained by sol-gel process vol.23, pp.13, 2016, https://doi.org/10.1007/s11356-016-6438-2
- Discovery of a ternary pseudobrookite phase in the earth-abundant Ti–Zn–O system vol.45, pp.4, 2016, https://doi.org/10.1039/C5DT04145G
- Optical and Structural Properties of Zn2TiO4:Mn2+ vol.46, pp.12, 2017, https://doi.org/10.1007/s11664-017-5742-z
- nanophosphor for wLEDs vol.3, pp.7, 2016, https://doi.org/10.1088/2053-1591/3/7/075015
- Facile synthesis and photocatalytic activity of ZnO/zinc titanate core–shell nanorod arrays vol.5, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaa938
- nanoparticles vol.39, pp.12, 2019, https://doi.org/10.1088/1674-4926/39/12/123002
- Investigation on the electrical and optical properties of some zinc titanate ceramics vol.92, pp.3, 2019, https://doi.org/10.1007/s12043-018-1694-y
- Synthesis of Zn 2 TiO 4 @CdS Core‐shell Heteronanostructures by Novel Thermal Decomposition Approach for Photocatalytic Application vol.4, pp.43, 2009, https://doi.org/10.1002/slct.201903544
- Comparative Study of Zn2Ti3O8 and ZnTiO3 Photocatalytic Properties for Hydrogen Production vol.10, pp.12, 2020, https://doi.org/10.3390/catal10121372