DOI QR코드

DOI QR Code

Accurate Evaluation of Polarization Characteristics in the Integrated Optic Chip for Interferometric Fiber Optic Gyroscope Based on Path-matched Interferometry

  • Choi, Woo-Seok (The 3rd R&D Institute, Agency for Defense Development) ;
  • Jo, Min-Sik (The 3rd R&D Institute, Agency for Defense Development)
  • Received : 2009.05.19
  • Accepted : 2009.07.01
  • Published : 2009.12.25

Abstract

Accurate evaluation of polarization characteristics in the integrated optic chip (IOC) for interferometric fiber optic gyroscope was performed. Spatial distribution of optical wavetrains caused by the polarization parameters such as local polarization cross-coupling and polarization rejection coefficient of the IOC were measured utilizing the path-matched optical coherence domain polarimetry (PM-OCDP). With the analytic model deduced from Jones matrix representation, we could accurately identify the polarization characteristics of the IOC. Both degree of measurement error due to the imperfect equipment conditions in PM-OCDP and birefringence of IOC chip were also characterized.

Keywords

References

  1. R. A. Bergh, H. C. Lefervre, and H. J. Shaw, 'An overview of fiber-optic gyroscopes,' J. Lightwave Technol. 2, 91-107 (1984) https://doi.org/10.1109/JLT.1984.1073580
  2. R. Ulrich, 'Fiber-optic rotation sensing with low drift,' Opt. Lett. 5, 173-175 (1980) https://doi.org/10.1364/OL.5.000173
  3. R. Ulrich, 'Fiber-ring interferometer: polarization analysis,' Opt. Lett. 4, 152-154 (1979) https://doi.org/10.1364/OL.4.000152
  4. E. C. Kintner, 'Polarization control in optical-fiber gyroscopes,' Opt. Lett. 6, 154-156 (1981) https://doi.org/10.1364/OL.6.000154
  5. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, 'All-singlemode fiber-optic gyroscope with long-term stability,' Opt. Lett. 6, 502-504 (1981) https://doi.org/10.1364/OL.6.000502
  6. E. Jones and J. W. Parker, 'Bias reduction by polarisation dispersion in the fibre-optic gyroscope,' Electron. Lett. 22, 54-56 (1986) https://doi.org/10.1049/el:19860037
  7. H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Boston, MA, USA, 1993), Chapter 3
  8. H. C. Lefervre, J. P. Bettini, S. Vatoux, and M. Papuchon, 'Progress in optical fiber gyroscoeps using integrated optics,' Proc. SPIE MS 8, 216-227 (1985)
  9. Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, 'LiNbO3 optical waveguide fabrication by high-temperature proton exchange,' J. Lightwave Technol. 18, 562-568 (2000) https://doi.org/10.1109/50.838131
  10. S. C. Rashleigh, W. K. Burns, R. P. Moeller, and R. Ulrich, 'Polarization holding in birefringent single-mode fibers,' Opt. Lett. 7, 40-42 (1982) https://doi.org/10.1364/OL.7.000040
  11. H. C. Lefervre, 'Comments about fiber-optic gyroscopes,' Proc. SPIE 838, 86-97 (1987)
  12. K. Takada, J. Noda, and K. Okamoto, 'Measurement of spatial distribution of mode coupling in birefringent polarization-maintaining fiber with new detection scheme,' Opt. Lett. 11, 680-682 (1986) https://doi.org/10.1364/OL.11.000680
  13. K. Takada, K. Chida, and J. Noda, 'Precise method for angular alignment of birefringent fiber based on interferometric technique,' Appl. Opt. 26, 2979-2987 (1987) https://doi.org/10.1364/AO.26.002979
  14. W. K. Burns and R. P. Moeller, 'Polarizer requirements for fiber gyroscopes with high-birefringence fiber and broad-band sources,' J. Lightwave Technol. 2, 430-435 (1984) https://doi.org/10.1109/JLT.1984.1073627
  15. W. K. Burns, 'Phase error bounds of fiber gyro with polarization holding fiber,' J. Lightwave Technol. 4, 8-14 (1986) https://doi.org/10.1109/JLT.1986.1074618
  16. H. C. Lefervre, The Fiber-optic Gyroscope (Artech House, Boston, MA, USA, 1993), Appendix 1
  17. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, New York, NY, USA, 2000), Chapter 3

Cited by

  1. A numerical algorithm to determine straightness error, surface roughness, and waviness measured using a fiber optic interferometer vol.85, 2016, https://doi.org/10.1016/j.optlastec.2016.05.014
  2. Inconsistency measurement between two branches of LiNbO3 integrated optic Y-junction vol.369, 2016, https://doi.org/10.1016/j.optcom.2016.02.049
  3. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification vol.16, pp.12, 2016, https://doi.org/10.3390/s16030419
  4. Full Evaluation of Polarization Characteristics of Multifunctional Integrated Optic Chip With High Accuracy vol.32, pp.22, 2014, https://doi.org/10.1109/JLT.2014.2342753
  5. Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.237
  6. Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration vol.3, pp.4, 2015, https://doi.org/10.1364/PRJ.3.000115
  7. Influence of ghost coupling points on distributed polarization crosstalk measurements in high birefringence fiber and its solution vol.54, pp.8, 2015, https://doi.org/10.1364/AO.54.001918
  8. Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips vol.56, pp.24, 2017, https://doi.org/10.1364/AO.56.006873
  9. Interferometric Fiber Optic Sensors vol.12, pp.12, 2012, https://doi.org/10.3390/s120302467
  10. Distributed fiber optic vibration sensor based on polarization fading model for gas pipeline leakage testing experiment 2017, https://doi.org/10.1177/1461348417725949