DOI QR코드

DOI QR Code

A 12.5-Gb/s Optical Transmitter Using an Auto-power and -modulation Control

  • Oh, Won-Seok (Hybrid Signal Processing Research Center, Korea Electronics Technology Institute) ;
  • Park, Kang-Yeob (Hybrid Signal Processing Research Center, Korea Electronics Technology Institute) ;
  • Im, Young-Min (System Packaging Research Center, Korea Electronics Technology Institute) ;
  • Kim, Hwe-Kyung (System Packaging Research Center, Korea Electronics Technology Institute)
  • Received : 2009.09.15
  • Accepted : 2009.11.18
  • Published : 2009.12.25

Abstract

In this paper, a 12.5-Gb/s optical transmitter is implemented using 0.13-${\mu}m$ CMOS technology. The optical transmitter that we constructed compensates temperature effects of VCSEL (Vertical cavity surface emitting laser) using auto-power control (APC) and auto-modulation control (AMC). An external monitoring photodiode (MPD) detects optical power and modulation. The proposed APC and AMC demonstrate 5$\sim$20-mA of bias-current control and 5$\sim$20-mA of modulation-current control, respectively. To enhance the bandwidth of the optical transmitter, an active feedback amplifier with negative capacitance compensation is exploited. The whole chip consumes only 140.4-mW of DC power at a single 1.8-V supply under the maximum modulation and bias currents, and occupies the area of 1280-${\mu}m$ by 330-${\mu}m$ excluding bonding pads.

Keywords

References

  1. M. S. Lee, B. T. Lee, J. D. Kim, and D. S. Lee, 'Fabrication of 2.5 Gbps burst-mode receiver and its full compliance to GPON,' J. Opt. Soc. Korea 12, 355-358 (2008) https://doi.org/10.3807/JOSK.2008.12.4.355
  2. H. S. Kang, M. J. Lee, and W. Y. Choi, '6.25-Gb/s optical receiver using a CMOS-compatible Si avalanche photodetector,' J. Opt. Soc. Korea 12, 217-220 (2008) https://doi.org/10.3807/JOSK.2008.12.4.217
  3. S. K. Kang, T. W. Lee, H. H. Park, and D. V. Plant, 'A novel automatic power control method for multichannel VCSEL driver,' in Proc. Pacific Rim Conference on Lasers and Electro-optics (Tokyo, Japan, Jul. 2005), pp. 836-838
  4. R. Tao, M. Berroth, and Z. G. Wang, 'Low power 10 Gbit/s VCSEL driver for optical interconnect,' Electron. Lett. 39, 1743-1744 (2003) https://doi.org/10.1049/el:20031111
  5. S. Rabii, N. Acharya, P. Chau, J. Dao, A. Feldman, H.. J. Liaw, D. Liu, M. Loinaz, M. Luschas, A. Salleh, S. Sheth, S. Sidiropoulos, D. Stark, and S. Verma, 'An integrated VCSEL driver for 10Gb ethernet in 0.13-um CMOS,' in Proc. IEEE International Conference on Solid-state Circuits (Marriott Hotel, San Francisco, CA, USA, Feb. 2006), pp. 930-939 https://doi.org/10.1109/ISSCC.2006.1696134

Cited by

  1. Design and analysis of a multichannel transceiver for high-speed optical interconnects vol.48, pp.1, 2016, https://doi.org/10.1007/s11082-015-0316-x
  2. Optical transceiver with in-chip temperature compensation module design and fabrication vol.48, pp.10, 2016, https://doi.org/10.1007/s11082-016-0721-9
  3. A 5.28-Gb/s serializer ASIC for uncompressed long-haul multimedia interconnects vol.73, pp.1, 2012, https://doi.org/10.1007/s10470-012-9899-3
  4. On-chip temperature compensation for optical transmitter modules vol.49, pp.3, 2013, https://doi.org/10.1049/el.2012.3350