DOI QR코드

DOI QR Code

Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), │(NH4)60Na11│[Si121Al71O384]-FAU

  • Seo, Sung-Man (Department of Applied Chemistry, Andong National University) ;
  • Kim, Ghyung-Hwa (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University) ;
  • Wang, Lian-Zhou (ARC Centre of Excellence for Functional Nanomaterials, School of Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland) ;
  • Lu, Gao-Qing (ARC Centre of Excellence for Functional Nanomaterials, School of Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Published : 2009.03.20

Abstract

The single-crystal structure of largely ammonium-exchanged zeolite Y dehydrated at room temperature (293 K) and 1 ${\times}\;10^{-6}$ Torr. has been determined using synchrotron X-radiation in the cubic space group $Fd\overline{3}m\;(a=24.9639(2)\AA)$ at 294 K. The structure was refined to the final error index $R_1$ = 0.0429 with 926 reflections where $F_o>4\sigma(F_o)$; the composition (best integers) was identified as |$(NH_4)_{60}Na_{11}$|[$Si_{121}Al_{71}O_{384}$]-FAU. The 11 $Na^{+}$ ions per unit cell were found at three different crystallographic sites and 60 ${NH_4}^{+}$ ions were distributed over three sites. The 3 $Na^{+}$ ions were located at site I, the center of the hexagonal prism ($Na-O\;=\;2.842(5)\;\AA\;and\;O-Na-O\;=\;85.98(12)^{\circ}$). The 4 $Na^{+}$ and 22 ${NH_4}^{+}$ ions were found at site I' in the sodalite cavity opposite the double 6-rings, respectively ($Na-O\;=\;2.53(13)\;\AA,\;O-Na-O\;=\;99.9(7)^{\circ},\;N-O\;=\;2.762(11)\;\AA,\;and\;O-N-O =\;89.1(5)^{\circ}$). About 4 $Na^{+}$ ions occupied site II ($(Na-O\;=\;2.40(4)\;\AA\;and\;O-Na-O\;=\;108.9(3)^{\circ}$) and 29 ${NH_4}^{+}$ ions occupy site II ($N-O\;=\;2.824(9)\;\AA\;and\;O-N-O\;=\;87.3(3)^{\circ}$) opposite to the single 6-rings in the supercage. The remaining 9 ${NH_4}^{+}$ ions were distributed over site III' ($N-O\;=\;2.55(3),\;2.725(13)\;\AA\;and\;O-N-O\;=\;94.1(13),\;62.16(15),\;155.7(14)^{\circ}$).

Keywords

References

  1. Sato, K.; Nishimura, Y.; Honna, K.; Matsubayashi, N.; Shimada, H. J. Catal. 2001, 200, 288 https://doi.org/10.1006/jcat.2001.3184
  2. Breck, D. W. Zeolite Molecular Sieves; John Wiley & Son: New York, 1973; pp 92-107
  3. Jang, S. B.; Kim, M. S.; Han, Y. W.; Kim, Y. Bull. Korean Chem. Soc. 1996, 17(7), 631
  4. Smith, J. V. Molecular Sieve Zeolites-I, Advances in Chemistry Series, No. 101; Flanigen, E. M., Sand, L. B., Eds.; American Chemical Society: Washington DC, 1971; pp 171-200
  5. Leung, P. C. W.; Kunz, K. B.; Maxwell, I. E.; Seff, K. J. Phys. Chem. 1975, 79, 2157 https://doi.org/10.1021/j100587a020
  6. Sun, T.; Seff, K. J. Phys. Chem. 1994, 98, 10156 https://doi.org/10.1021/j100091a034
  7. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1976, 98, 7569 https://doi.org/10.1021/ja00440a021
  8. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1977, 99, 1112 https://doi.org/10.1021/ja00446a023
  9. Vance, T. B., Jr.; Seff, K. J. Phys. Chem. 1975, 79, 2163 https://doi.org/10.1021/j100587a021
  10. Dejsupa, C.; Heo, N. H.; Seff, K. Zeolites 1989, 9, 146 https://doi.org/10.1016/0144-2449(89)90065-1
  11. Riley, P. E.; Seff, K.; Shoemaker, D. P. J. Phys. Chem. 1972, 76, 2593 https://doi.org/10.1021/j100662a021
  12. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1977, 99, 4039 https://doi.org/10.1021/ja00454a023
  13. Kim, Y.; Seff, K. J. Am. Chem. Soc. 1978, 100, 175 https://doi.org/10.1021/ja00469a030
  14. Kim, Y.; Seff, K. J. Phys. Chem. 1978, 82, 921 https://doi.org/10.1021/j100497a016
  15. Kim, Y.; Seff, K. J. Phys. Chem. 1978, 82, 1071 https://doi.org/10.1021/j100498a021
  16. Kim, Y.; Seff, K. J. Phys. Chem. 1987, 91, 671 https://doi.org/10.1021/j100287a035
  17. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1978, 100, 3091 https://doi.org/10.1021/ja00478a023
  18. Yanagida, R. Y.; Vance, T. B., Jr.; Seff, K. J. Chem. Soc. (D) 1973, 382
  19. Yanagida, R. Y.; Vance, T. B., Jr.; Seff, K. Inorg. Chem. 1974, 13, 723 https://doi.org/10.1021/ic50133a042
  20. Riley, P. E.; Seff, K. Inorg. Chem. 1974, 13, 1355 https://doi.org/10.1021/ic50136a022
  21. Riley, P. E.; Seff, K. J. Phys. Chem. 1975, 79, 1594 https://doi.org/10.1021/j100582a025
  22. Firor, R. L.; Seff, K. J. Phys. Chem. 1978, 82, 1650 https://doi.org/10.1021/j100503a016
  23. Heo, N. H.; Cruz, W. V.; Seff, K. J. Phys. Chem. 1986, 90, 3931 https://doi.org/10.1021/j100408a021
  24. Lee, H. S.; Seff, K. J. Phys. Chem. 1981, 85, 397 https://doi.org/10.1021/j150604a018
  25. Lee, H. S.; Cruz, W. V.; Seff, K. J. Phys. Chem. 1982, 86, 3562 https://doi.org/10.1021/j100215a015
  26. Kim, Y.; Seff, K. J. Phys. Chem. 1980, 84, 2823 https://doi.org/10.1021/j100458a031
  27. McCusker, L. B.; Seff, K. J. Phys. Chem. 1981, 85, 405 https://doi.org/10.1021/j150604a019
  28. McCusker, L. B.; Seff, K. J. Am. Chem. Soc. 1978, 100, 5052 https://doi.org/10.1021/ja00484a023
  29. McCusker, L. B.; Seff, K. J. Am. Chem. Soc. 1979, 101, 5235 https://doi.org/10.1021/ja00512a021
  30. McCusker, L. B.; Seff, K. J. Phys. Chem. 1980, 84, 2827 https://doi.org/10.1021/j100458a032
  31. McCusker, L. B.; Seff, K. J. Phys. Chem. 1981, 85, 166 https://doi.org/10.1021/j150602a013
  32. Jang, S. B.; Kim, U. S.; Kim, Y.; Seff, K. J. Phys. Chem. 1994, 98, 3796 https://doi.org/10.1021/j100065a040
  33. Roney, C.; Seff, K. J. Phys. Chem. 1985, 89, 19650
  34. Roney, C.; Seff, K. Zeolites 1993, 13, 97 https://doi.org/10.1016/0144-2449(93)90067-D
  35. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1977, 99, 7059 https://doi.org/10.1021/ja00463a049
  36. Firor, R. L.; Seff, K. J. Am. Chem. Soc. 1978, 100, 978 https://doi.org/10.1021/ja00471a057
  37. Zhu, L.; Seff, K. J. Phys. Chem. B 1999, 103, 9512 https://doi.org/10.1021/jp991817l
  38. Olson, D. H. Zeolites 1995, 15, 439 https://doi.org/10.1016/0144-2449(95)00029-6
  39. Zhu, L.; Seff, K. J. Phys. Chem. B 2000, 104, 8946-8951 and its erratum J. Phys. Chem. B 2001, 105, 12221 https://doi.org/10.1021/jp000710r
  40. Lee, S. H.; Kim, Y.; Kim, D. S.; Seff, K. Bull. Korean Chem. Soc. 1998, 19, 98
  41. Ryu, K. S.; Bae, M. N.; Kim, Y.; Seff, K. Microporous Mesoporous and Mater. 2004, 71, 65 https://doi.org/10.1016/j.micromeso.2004.01.006
  42. Kim, Y.; Han, Y. W.; Seff, K. Zeolites 1997, 18, 325 https://doi.org/10.1016/S0144-2449(97)00002-X
  43. Zhu, L.; Seff, K. Microporous Mesoporous and Mater. 2000, 39, 187 https://doi.org/10.1016/S1387-1811(00)00195-5
  44. Lee, S. H.; Kim, Y.; Seff, K. Microporous Mesoporous and Mater. 2000, 41, 49-59 and its erratum Microporous Mesoporous and Mater. 2002, 52, 61 https://doi.org/10.1016/S1387-1811(02)00277-9
  45. Kim, S. Y.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 6938-6945 and its erratum J. Phys. Chem. B 2003, 107, 10320 https://doi.org/10.1021/jp0214864
  46. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 6914 https://doi.org/10.1021/jp970907s
  47. Kim, M. J.; Jeong, M. S.; Kim, Y.; Seff, K. Microporous Mesoporous and Mater. 1999, 30, 233 https://doi.org/10.1016/S1387-1811(99)00012-8
  48. Jang, S. B.; Jeong, M. S.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 9041 https://doi.org/10.1021/jp971671v
  49. Bae, D.; Seff, K. Microporous Mesoporous and Mater. 1999, 33, 265 https://doi.org/10.1016/S1387-1811(99)00146-8
  50. Bae, D.; Seff, K. Microporous Mesoporous and Mater. 2000, 40, 219 https://doi.org/10.1016/S1387-1811(00)00184-0
  51. Bae, D.; Zhen, S.; Seff, K. J. Phys. Chem. B 1999, 103, 5631 https://doi.org/10.1021/jp990854+
  52. Bae, D.; Seff, K. Microporous Mesoporous and Mater. 2000, 40, 233 https://doi.org/10.1016/S1387-1811(00)00254-7
  53. Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996, 100, 13720 https://doi.org/10.1021/jp9603647
  54. Bae, D.; Seff, K. Zeolites 1996, 17, 444 https://doi.org/10.1016/S0144-2449(96)00097-8
  55. Yeom, Y. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 1997, 101, 5314 https://doi.org/10.1021/jp970727i
  56. Shibata, W.; Seff, K. Zeolites 1997, 19, 87 https://doi.org/10.1016/S0144-2449(97)00053-5
  57. Lee, S. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 2000, 104, 2490 https://doi.org/10.1021/jp993092r
  58. Park, H. S.; Seff, K. J. Phys. Chem. B 2000, 104, 2224 https://doi.org/10.1021/jp992153i
  59. Seo, S. M.; Kim, G. H.; Lee, H. S.; Ko, S. O.; Lee, O. S.; Kim, Y. H.; Kim, S. H.; Heo, N. H.; Lim, W. T. Anal. Sci. 2006, 22, x209 https://doi.org/10.2116/analscix.22.x209
  60. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Seff, K. Microporous Mesoporous and Mater. 2006, 92, 234 https://doi.org/10.1016/j.micromeso.2005.11.052
  61. Jeong, G. H.; Lee, Y. M.; Kim, Y.; Vaughan, D. E. W.; Seff, K. Microporous Mesoporous and Mater. 2006, 94, 313 https://doi.org/10.1016/j.micromeso.2006.01.023
  62. Lim, W. T.; Kwon, J. H.; Choi, S. Y.; Kim, Y. H.; Heo, N. H. Anal. Sci. & Tech. 2005, 18, 278
  63. Lee, Y. M.; Jeong, G. H.; Kim, Y.; Seff, K. Microporous Mesoporous and Mater. 2006, 88, 105 https://doi.org/10.1016/j.micromeso.2005.08.034
  64. Charnell, J. F. J. Cryst. Growth. 1971, 8, 291 https://doi.org/10.1016/0022-0248(71)90074-1
  65. Bogomolov, V. N.; Petranovskii, V. P. Zeolites 1986, 6, 418 https://doi.org/10.1016/0144-2449(86)90020-5
  66. Warzywoda, J.; Bac, N.; Sacco Jr., A. J. Crystal Growth 1999, 204, 539 https://doi.org/10.1016/S0022-0248(99)00235-3
  67. Ferchiche, S.; Valcheva-Traykova, M.; Vaughan, D. E. W.; Warzywoda, J.; Sacco Jr., A. J. Crystal Growth 2001, 222, 801 https://doi.org/10.1016/S0022-0248(00)00979-9
  68. Ferchiche, S.; Warzywoda, J.; Sacco Jr., A. Int. J. Inorg. Mater. 2001, 3, 773 https://doi.org/10.1016/S1466-6049(01)00046-0
  69. Lim, W. T.; Seo, S. M.; Kim, G. H.; Lee, H. S.; Seff, K. J. Phys. Chem. C 2007, 111, 18294 https://doi.org/10.1021/jp0742721
  70. Watkins, K. Eng. News 2001, 79, 40
  71. McCusker, L. B.; Seff, K. J. Am. Chem. Soc. 1981, 103, 3441 https://doi.org/10.1021/ja00402a031
  72. Patalinghug, W. C.; Seff, K. J. Phys. Chem. 1990, 94, 7662 https://doi.org/10.1021/j100382a063
  73. Zhen, S.; Seff, K. J. Phys. Chem. B 1999, 103, 10409 https://doi.org/10.1021/jp9924272
  74. Zhen, S.; Seff, K.J. Phys. Chem. B 2001, 105, 12222 https://doi.org/10.1021/jp013382j
  75. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307 https://doi.org/10.1016/S0076-6879(97)76066-X
  76. Bruker-AXS (ver. 6.12), XPREP, Program for the Automatic Space Group Determination; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001
  77. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  78. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187
  79. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390 https://doi.org/10.1107/S0567739468000756
  80. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98
  81. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  82. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150
  83. Loewenstein, W. Am. Mineral. 1954, 39, 92
  84. Yeom, Y. H.; Kim, Y.; Seff, K. Microporous Mesoporous Mater. 1999, 28, 103 https://doi.org/10.1016/S1387-1811(98)00290-X