References
- Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11 https://doi.org/10.1016/j.jpowsour.2006.02.065
- Chen, J. H.; Li, W. Z.; Wang, D. Z.; Yang, S. X.; Wen, J. G.; Ren, Z. F. Carbon 2002, 40, 1193 https://doi.org/10.1016/S0008-6223(01)00266-4
- Adhyapak, P. V.; Maddanimath, T.; Pethkar, S.; Chandwadkar, A. J.; Negi, Y. S.; Vijayamohanan, K. J. Power Sources 2002, 109, 105 https://doi.org/10.1016/S0378-7753(02)00049-6
- Kim, C.-H.; Pyun, S.-I.; Shin, H.-C. J. Electrochemical Society 2002, 149(2), A93 https://doi.org/10.1149/1.1429223
- Lozano-Castello, D.; Cazorla-Amoros, D.; Linares-Solano, A.; Shiraishi, S.; Kurihara, H.; Oya, A. Carbon 2003, 41, 1765 https://doi.org/10.1016/S0008-6223(03)00141-6
- Honda, K.; Yoshimura, M.; Kawakita, K.; Fujishima, A. J. ElectrochemicalSociety 2004, 151(4), A532 https://doi.org/10.1149/1.1649752
- Momma, T.; Liu, X.; Osaka, T. J. Power Sources 1996, 60, 249 https://doi.org/10.1016/S0378-7753(96)80018-8
- Kim, C.; Park, S. H.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 877 https://doi.org/10.1016/j.electacta.2004.02.071
- Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 883 https://doi.org/10.1016/j.electacta.2004.02.072
- Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341 https://doi.org/10.1002/adma.200602184
- Kim, C.; Jeong, Y. I.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Endo, M.; Lee, J.-W. Small 2007, 3, 91 https://doi.org/10.1002/smll.200600243
- Yang, K. S.; Kim, C.; Park, S. H.; Kim, J. H.; Wan, W. J. J. Biomedical Nanotech. 2006, 2, 103 https://doi.org/10.1166/jbn.2006.017
- Park, S. H.; Kim, C.; Yang, K. S. Synth. Met. 2004, 143, 175 https://doi.org/10.1016/j.synthmet.2003.11.006
- Park, S. H.; Kim, C.; Choi, Y. O.; Yang, K. S. Carbon 2003, 41, 2655 https://doi.org/10.1016/S0008-6223(03)00272-0
- Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216 https://doi.org/10.1063/1.1599963
- Park, S. H.; Kim, C.; Jeong, Y. I.; Lim, D. Y.; Lee, Y. E.; Yang, K. S. Synth. Met. 2004, 146, 207 https://doi.org/10.1016/j.synthmet.2004.07.004
- Kim, C.; Cho, Y. J.; Yun, W. Y.; Ngoc, B. T. N.; Yang, K. S.; Chang, D. R.; Lee, J. W.; Kojima, M.; Kim, Y. A.; Endo, M. Solid. State. Chommun. 2007, 142, 20 https://doi.org/10.1016/j.ssc.2007.01.030
- Oh, G. Y.; Ju, Y. W.; Jung, H. R.; Lee, W. J. J. Anal. Appl. Pyrolysis 2008, 81, 211 https://doi.org/10.1016/j.jaap.2007.11.006
- Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solan, A. Carbon 1995, 33, 1085 https://doi.org/10.1016/0008-6223(95)00054-H
- Ju, Y. W.; Choi, G. R.; Jung, H. R.; Kim, C.; Yang, K. S.; Lee, W. J. J. Electrochem. Soc. 2007, 154, A192 https://doi.org/10.1149/1.2426898
- Ju, Y. W.; Park, J. H.; Jung, H. R.; Cho, S. J.; Lee, W. J. Mater. Sci. Eng. 2008, B 147, 7. https://doi.org/10.1016/j.mseb.2007.10.018
- Deborah, D. L. Carbon Fiber Composites; Butterworth-Heinemann: 1994, 3.
- Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216 https://doi.org/10.1063/1.1599963
- Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Chem. Commun. 1999, 2177
- Portet, C.; Tabema, P. L.; Simon, P.; Laberty-Robert, C. Electrochim. Acta 2004, 49, 905 https://doi.org/10.1016/j.electacta.2003.09.043
- Lust, E.; Janes, A.; Arulepp, M. J. Electroanal. Chem. 2004, 562, 33 https://doi.org/10.1016/j.jelechem.2003.07.034
- An, K. H.; Kim, W. S.; Pakr, Y. S.; Moon, J.-M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Funct. Mater. 2001, 11, 387 https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
- Gamby, J. J. Power Sources 2001, 101, 109 https://doi.org/10.1016/S0378-7753(01)00707-8
- Burke, A. J. Power Sources 2000, 91, 37 https://doi.org/10.1016/S0378-7753(00)00485-7
Cited by
- Electrospinning: designed architectures for energy conversion and storage devices vol.4, pp.12, 2011, https://doi.org/10.1039/c1ee02201f
- Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide vol.13, pp.4, 2012, https://doi.org/10.5714/CL.2012.13.4.254
- Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors vol.19, pp.6, 2012, https://doi.org/10.1007/s10934-011-9559-5
- Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers vol.119, pp.1, 2015, https://doi.org/10.1007/s00339-014-8893-2
- Hybrid adsorbent nonwoven structures: a review of current technologies vol.51, pp.9, 2016, https://doi.org/10.1007/s10853-016-9741-x
- Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301
- Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends vol.134, pp.42, 2017, https://doi.org/10.1002/app.45388
- Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes vol.24, pp.6, 2017, https://doi.org/10.1007/s10934-017-0384-3
- Microporous Carbon Materials by Hydrogen Treatment: The Balance of Porosity and Graphitization upon the Capacitive Performance vol.56, pp.25, 2017, https://doi.org/10.1021/acs.iecr.7b01626
- Preparation of an electric double layer capacitor (EDLC) using Miscanthus-derived biocarbon pp.2168-0485, 2018, https://doi.org/10.1021/acssuschemeng.7b02563
- High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications vol.2, pp.2, 2009, https://doi.org/10.1039/c3ta13779a
- Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Field-Based Techniques vol.3, pp.1, 2009, https://doi.org/10.1002/admt.201700168
- Control of Micro- and Mesopores in Carbon Nanofibers and Hollow Carbon Nanofibers Derived from Cellulose Diacetate via Vapor Phase Infiltration of Diethyl Zinc vol.6, pp.11, 2009, https://doi.org/10.1021/acssuschemeng.8b02014
- Electrospun Carbon Fibers Replace Metals as a Current Collector in Supercapacitors vol.2, pp.8, 2009, https://doi.org/10.1021/acsaem.9b00854
- A Role of Activators for Efficient CO 2 Affinity on Polyacrylonitrile-Based Porous Carbon Materials vol.8, pp.None, 2009, https://doi.org/10.3389/fchem.2020.00710