DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Polyacrylonitrile/pitch Carbon Fibers Produced Using Electrospinning

  • Kim, Bo-Hye (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • Bui, Nhu-Ngoc (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • Yang, Kap-Seung (Faculty of Applied Chemical Engineering and Alan G. MacDiarmid Energy Research Institute (AMERI), Chonnam National University) ;
  • dela Cruz, Marilou E. (Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, University of Texas at Dallas) ;
  • Ferraris, John P. (Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, University of Texas at Dallas)
  • Published : 2009.09.20

Abstract

The electrospinnability of pitch was improved by blending in a solution of polyacrylonitrile (PAN) resulting in the reduction of the average fiber diameter from 2000 to 750 nm. Activated carbon fibers (ACFs) derived by stabilization, carbonization and steam activation at 700, 800, and 900 ${^{\circ}C}$ of the PAN/pitch electrospun fibers for 60 min were investigated as electrodes for supercapacitors. The Brunauer, Emmett, Teller (BET) specific surface area ranged from 732 to 1877 $m^2g^{-1}$ and the specific capacitance from 75.5 to 143.5 $Fg^{-1}$, depending on the activation conditions. Electrodes from the electrospun web activated at 900 ${^{\circ}C}$ exhibited a particularly quick response showing a high frequency of 5.5 Hz at a phase angle of ‒$45^o$ of the impedance spectroscopy.

Keywords

References

  1. Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 11 https://doi.org/10.1016/j.jpowsour.2006.02.065
  2. Chen, J. H.; Li, W. Z.; Wang, D. Z.; Yang, S. X.; Wen, J. G.; Ren, Z. F. Carbon 2002, 40, 1193 https://doi.org/10.1016/S0008-6223(01)00266-4
  3. Adhyapak, P. V.; Maddanimath, T.; Pethkar, S.; Chandwadkar, A. J.; Negi, Y. S.; Vijayamohanan, K. J. Power Sources 2002, 109, 105 https://doi.org/10.1016/S0378-7753(02)00049-6
  4. Kim, C.-H.; Pyun, S.-I.; Shin, H.-C. J. Electrochemical Society 2002, 149(2), A93 https://doi.org/10.1149/1.1429223
  5. Lozano-Castello, D.; Cazorla-Amoros, D.; Linares-Solano, A.; Shiraishi, S.; Kurihara, H.; Oya, A. Carbon 2003, 41, 1765 https://doi.org/10.1016/S0008-6223(03)00141-6
  6. Honda, K.; Yoshimura, M.; Kawakita, K.; Fujishima, A. J. ElectrochemicalSociety 2004, 151(4), A532 https://doi.org/10.1149/1.1649752
  7. Momma, T.; Liu, X.; Osaka, T. J. Power Sources 1996, 60, 249 https://doi.org/10.1016/S0378-7753(96)80018-8
  8. Kim, C.; Park, S. H.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 877 https://doi.org/10.1016/j.electacta.2004.02.071
  9. Kim, C.; Choi, Y. O.; Lee, W. J.; Yang, K. S. Electrochim. Acta 2004, 50, 883 https://doi.org/10.1016/j.electacta.2004.02.072
  10. Kim, C.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Kim, Y. J.; Endo, M.; Yang, S. C. Adv. Mater. 2007, 19, 2341 https://doi.org/10.1002/adma.200602184
  11. Kim, C.; Jeong, Y. I.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Endo, M.; Lee, J.-W. Small 2007, 3, 91 https://doi.org/10.1002/smll.200600243
  12. Yang, K. S.; Kim, C.; Park, S. H.; Kim, J. H.; Wan, W. J. J. Biomedical Nanotech. 2006, 2, 103 https://doi.org/10.1166/jbn.2006.017
  13. Park, S. H.; Kim, C.; Yang, K. S. Synth. Met. 2004, 143, 175 https://doi.org/10.1016/j.synthmet.2003.11.006
  14. Park, S. H.; Kim, C.; Choi, Y. O.; Yang, K. S. Carbon 2003, 41, 2655 https://doi.org/10.1016/S0008-6223(03)00272-0
  15. Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216 https://doi.org/10.1063/1.1599963
  16. Park, S. H.; Kim, C.; Jeong, Y. I.; Lim, D. Y.; Lee, Y. E.; Yang, K. S. Synth. Met. 2004, 146, 207 https://doi.org/10.1016/j.synthmet.2004.07.004
  17. Kim, C.; Cho, Y. J.; Yun, W. Y.; Ngoc, B. T. N.; Yang, K. S.; Chang, D. R.; Lee, J. W.; Kojima, M.; Kim, Y. A.; Endo, M. Solid. State. Chommun. 2007, 142, 20 https://doi.org/10.1016/j.ssc.2007.01.030
  18. Oh, G. Y.; Ju, Y. W.; Jung, H. R.; Lee, W. J. J. Anal. Appl. Pyrolysis 2008, 81, 211 https://doi.org/10.1016/j.jaap.2007.11.006
  19. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solan, A. Carbon 1995, 33, 1085 https://doi.org/10.1016/0008-6223(95)00054-H
  20. Ju, Y. W.; Choi, G. R.; Jung, H. R.; Kim, C.; Yang, K. S.; Lee, W. J. J. Electrochem. Soc. 2007, 154, A192 https://doi.org/10.1149/1.2426898
  21. Ju, Y. W.; Park, J. H.; Jung, H. R.; Cho, S. J.; Lee, W. J. Mater. Sci. Eng. 2008, B 147, 7. https://doi.org/10.1016/j.mseb.2007.10.018
  22. Deborah, D. L. Carbon Fiber Composites; Butterworth-Heinemann: 1994, 3.
  23. Kim, C.; Yang, K. S. Appl. Phys. Lett. 2003, 83, 1216 https://doi.org/10.1063/1.1599963
  24. Lee, J.; Yoon, S.; Hyeon, T.; Oh, S. M.; Kim, K. B. Chem. Commun. 1999, 2177
  25. Portet, C.; Tabema, P. L.; Simon, P.; Laberty-Robert, C. Electrochim. Acta 2004, 49, 905 https://doi.org/10.1016/j.electacta.2003.09.043
  26. Lust, E.; Janes, A.; Arulepp, M. J. Electroanal. Chem. 2004, 562, 33 https://doi.org/10.1016/j.jelechem.2003.07.034
  27. An, K. H.; Kim, W. S.; Pakr, Y. S.; Moon, J.-M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Adv. Funct. Mater. 2001, 11, 387 https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G
  28. Gamby, J. J. Power Sources 2001, 101, 109 https://doi.org/10.1016/S0378-7753(01)00707-8
  29. Burke, A. J. Power Sources 2000, 91, 37 https://doi.org/10.1016/S0378-7753(00)00485-7

Cited by

  1. Electrospinning: designed architectures for energy conversion and storage devices vol.4, pp.12, 2011, https://doi.org/10.1039/c1ee02201f
  2. Fabrication and Characterization of Porous Non-Woven Carbon Based Highly Sensitive Gas Sensors Derived by Magnesium Oxide vol.13, pp.4, 2012, https://doi.org/10.5714/CL.2012.13.4.254
  3. Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors vol.19, pp.6, 2012, https://doi.org/10.1007/s10934-011-9559-5
  4. Fabrication, structure, and magnetic properties of electrospun carbon/cobalt ferrite (C/CoFe2O4) composite nanofibers vol.119, pp.1, 2015, https://doi.org/10.1007/s00339-014-8893-2
  5. Hybrid adsorbent nonwoven structures: a review of current technologies vol.51, pp.9, 2016, https://doi.org/10.1007/s10853-016-9741-x
  6. Electrospun Nanomaterials for Supercapacitor Electrodes: Designed Architectures and Electrochemical Performance vol.7, pp.2, 2016, https://doi.org/10.1002/aenm.201601301
  7. Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends vol.134, pp.42, 2017, https://doi.org/10.1002/app.45388
  8. Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes vol.24, pp.6, 2017, https://doi.org/10.1007/s10934-017-0384-3
  9. Microporous Carbon Materials by Hydrogen Treatment: The Balance of Porosity and Graphitization upon the Capacitive Performance vol.56, pp.25, 2017, https://doi.org/10.1021/acs.iecr.7b01626
  10. Preparation of an electric double layer capacitor (EDLC) using Miscanthus-derived biocarbon pp.2168-0485, 2018, https://doi.org/10.1021/acssuschemeng.7b02563
  11. High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications vol.2, pp.2, 2009, https://doi.org/10.1039/c3ta13779a
  12. Fabrication and Engineering of Nanostructured Supercapacitor Electrodes Using Electromagnetic Field-Based Techniques vol.3, pp.1, 2009, https://doi.org/10.1002/admt.201700168
  13. Control of Micro- and Mesopores in Carbon Nanofibers and Hollow Carbon Nanofibers Derived from Cellulose Diacetate via Vapor Phase Infiltration of Diethyl Zinc vol.6, pp.11, 2009, https://doi.org/10.1021/acssuschemeng.8b02014
  14. Electrospun Carbon Fibers Replace Metals as a Current Collector in Supercapacitors vol.2, pp.8, 2009, https://doi.org/10.1021/acsaem.9b00854
  15. A Role of Activators for Efficient CO 2 Affinity on Polyacrylonitrile-Based Porous Carbon Materials vol.8, pp.None, 2009, https://doi.org/10.3389/fchem.2020.00710