DOI QR코드

DOI QR Code

Intermediate Holographic Data Storage System by Using Sequentially Superimposed Recording

  • Yi, Jong-Su (Department of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Yeon-Ho (Department of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2009.08.27
  • 심사 : 2009.11.12
  • 발행 : 2009.12.25

초록

We introduce a holographic data storage system for intermediating between small data sets and mass holographic data recording. It employs a holographic sequentially superimposed recording technique. We discuss a time scheduling technique for making uniform reconstruction of sequentially recorded holograms and we show experimental results. We also discuss the Bragg selectivity of sequentially recorded holograms. The maximum storage density of our system is estimated to be 224kbit/$mm^2$. Our system is useful as an intermediate recording system before recording mass holographic data in a larger system.

키워드

참고문헌

  1. A.-H. Phan, N. Kim, and J.-H. Park, “Input-output coupler system with 45-degree slant angle based on Bragg hologram,” J. Opt. Soc. Korea 13, 123-130 (2009). https://doi.org/10.3807/JOSK.2009.13.1.123
  2. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Koloziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Exp. 17, 20840-20846 (2009). https://doi.org/10.1364/OE.17.020840
  3. M.-O. Jeong, N. Kim, and J.-H. Park, “Elemental image synthesis for integral imaging using phase-shifting digital holography,” J. Opt. Soc. Korea 12, 275-280 (2008). https://doi.org/10.3807/JOSK.2008.12.4.275
  4. S. Shin and Y. Yu, “Three-dimensional information and refractive index measurement using a dual wavelength digital holographic microscope,” J. Opt. Soc. Korea 13, 173-177 (2009). https://doi.org/10.3807/JOSK.2009.13.2.173
  5. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276-1278 (2009). https://doi.org/10.1364/OL.34.001276
  6. J. T. Lamachia and C. J. Vincelette, “Comparison of the diffraction efficiency of multiple exposure and single exposure holograms,” Appl. Opt. 7, 1857-1858 (1968). https://doi.org/10.1364/AO.7.001857
  7. W. J. Carlsen, “Holographic page synthesis for sequential input of data,” Appl. Opt. 13, 896-903 (1974). https://doi.org/10.1364/AO.13.000896
  8. R. K. Kostuk, J. W. Goodman, and L. Hesselink, “Volume reflection holograms with multiple gratings: an experimental and theoretical evaluation,” Appl. Opt. 25, 4362-4369 (1986). https://doi.org/10.1364/AO.25.004362
  9. S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. Haga, and H. Yoshizawa, “Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems,” Opt. Lett. 31, 1639-1641 (2006). https://doi.org/10.1364/OL.31.001639
  10. S. Yasuda, K. Kawano, J. Minabe, Y. Ogasawara, K. Hayashi, K. Haga, H. Yoshizawa, and M. Furuki, “Coaxial holographic data storage without recording the dc components,” Opt. Lett. 31, 2607-2609 (2006). https://doi.org/10.1364/OL.31.002607
  11. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Exp. 15, 16196-16209 (2007). https://doi.org/10.1364/OE.15.016196
  12. S. Yasuda, J. Minabe, and K. Kawano, “Optical noise reduction for dc-removed coaxial holographic data storage,” Opt. Lett. 32, 160-162 (2007). https://doi.org/10.1364/OL.32.000160
  13. C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Exp. 15, 18111-18118 (2007). https://doi.org/10.1364/OE.15.018111
  14. G. F. Marshall, Optical Scanning (Marcel Dekker, Inc., New York, USA, 1991), Chapter 1.
  15. S. K. Yun, “Spatial optical modulator (SOM): Samsung's light modulator for next-generation laser displays,” J. of the SID 15, 321-333 (2007). https://doi.org/10.1889/1.2739802
  16. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996). https://doi.org/10.1364/AO.35.002389
  17. J. T. Sheridan, F. T. O'Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model,” J. Opt. Soc. Am. B 21, 1443-1451 (2004). https://doi.org/10.1364/JOSAB.21.001443
  18. C. Aleksoff, “Gas lasers as sources for holography,” Appl. Opt. 6, 2192-2193 (1967). https://doi.org/10.1364/AO.6.002192
  19. A. A. Friesem, A. Kozma, and G. F. Adams, “Recording parameters of spatially modulated coherent wavefronts,” Appl. Opt. 6, 851-856 (1967). https://doi.org/10.1364/AO.6.000851
  20. G. Barbastathis and D. Psaltis, “Volume holographic multiplexing methods” in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer-V erlag Berlin Heidelbug, New York, USA, 2000).

피인용 문헌

  1. Preparation and Holographic Recording of Fluorescent Photopolymer Films Containing Anthracene Polymer for Security vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.305
  2. Holography optical memory recorded with error correcting bits vol.16, pp.6, 2014, https://doi.org/10.1088/2040-8978/16/6/065403