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Using one-range addition theorems for Slater type orbitals (STOs) and Coulomb-Yukawa like correlated interaction 
potentials (CIPs) introduced by the author, the series expansion formulae are derived for the multicenter 
multielectron integrals. The expansion coefficients occurring in these relations are presented through the overlap 
integrals of two STOs. The convergence of series expansion relations is tested by calculating concrete cases. The 
accuracy of the results is quite high for quantum number, screening constants and location of orbitals. The final 
results are especially useful in the calculation of multielectron properties for atoms and molecules when 
Hartree-Fock-Roothaan (HFR) and explicitly correlated methods are employed.
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Introduction

Quantum theory of electronic structure for atoms and mole­
cules requires the more accurate solutions of Schrodinger 
equation. For improving the solutions, one can use more 
accurate wave functions that include electron correlation by 
means of Hylleraas correlated wave function (Hy) and con­
figuration interaction (CI) approaches.1-6 We notice that the 
CI expansions converge much more slowly than Hy-method 
expansions. The Hy method first developed by James and 
Collidge7 has been used for determination of the ground state 
energy of H2 molecule8,9 and is still valid for two- and three- 
electron atomic and molecular systems (see, e.g., Refs.[10-12] 
and references quoted therein). A drawback in the Hy-type 
expansions, however, is the complexity of the calculation of 
multicenter multielectron integrals. There exist other corre­
lational approaches like explicitly correlated Gaussians or the 
R12 methods, of which the applicability in practical calcu­
lations (see Ref.[13] and references quoted therein) has already 
been proven.

The principal tools of above-mentioned explicitly corre­
lated methods are the two-range additional theorems the best 
known example of which is the Laplace expansion. The 
two-range addition theorems can lead to nontrivial technical 
problems in applications. The use of one-range addition the­
orems would be highly desirable since they are capable to 
simplify subsequent integrations in multicenter integrals sub­
stantially. The one-range addition theorems established in our 
published papers using complete orthonormal sets of Wa- 
exponential type orbitals (Ta - ETOs)14 could be utilized for 
the calculation of arbitrary multicenter multielectron integrals 
occurring in the explicitly correlated theories. In Ref.[15], we 
presented a particular method for obtaining the one-range 
addition theorems for STOs and CIPs of integer and nonin­
teger indices using complete orthonormal sets of W - ETOs 

(see also Ref.[16] Using these one-range addition theorems, 
the general formulas can be established for the multicenter 
t-electron integrals which arise in the study of electronic 
structure of N-electron atomic and molecular systems (1 < t < 
N).

Evaluation of Multicenter Multielection Integrals

According to a theorem for matrix elements of a general 
t-electron operator, the required matrix elements between 
N-dimensional determinantal wave functions are sums of 
matrix elements over t-dimensional basic determinantal wave 
functions.17,18 These matrix elements, therefore, the matrix 
elements between N-dimensional determinantal wave func­
tions of atomic and molecular systems can be expressed 
through the following 2t-center basic integrals of STOs and 
Coulomb-Yukawa like CIPs with integer and noninteger 
indices:
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In Ref.,[19] we have established the general formulae for 
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integral (1) using one-range addition theorems in terms of Ta- 
ETOs for StOs and Coulomb-Yukawa like CIPs. The aim of 
this work is with the help of one-range addition theorems in 
terms of STOs for STOs and Coulomb-Yukawa like CIPs, and 
the expansion formulae for the integer and noninteger n STO 
charge densities presented in previous papers15,16 to evaluate 
the multicenter multielectron integrals defined by Eq.(1).

For the evaluation of integral (1) we first utilize the follo­
wing relations for the noninteger ［丄 CIPs in terms of integer 
弘 CIPs and their symmetrical one-range addition theorems:15

M

f*?,如=M擊 £ 專"M) fq (& 如 
户v+1

(3)

where a = 1, 0, -1, -2, ... and
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(8)
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k 三 k21, k31, k41,..., kt1； k32, k42,・" kt2； k43,...,^；…；ktt-1 . (9)

The quantities S occurring in Eq.(7) are the one (g = h = a)-, 
two (g = a, h 丰 a or g 丰 a, h = a) - and three (g 丰 a, h 丰 a) - center 
overlap integrals of t+1 STOs. They are defined as
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Then, the integral (1) can be expressed through the 2t- 
center basic integrals of noninteger n STOs and Coulomb- 
Yukawa like CIPs with integer indices:
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Using Eq.(4) in Eq.(6), we obtain finally for the multicenter 
multielectron integrals the following series expansion rela­
tions:
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The first few special cases of multicenter multielectron 
integrals obtained from Eq.(7) are determined by

for t = 2
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Carrying through calculations analogous to those for the 
multielectron case, it is easy to derive for the one- electron 
multicenter integrals of Coulomb-Yukawa like CIPs the 
following relations: 
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Table 1. Comparison of methods of computing three-center integrals with STOs and Coulomb-Yukawa like CIPs for N = 15

n1 l1 m1 % n\ m'1 卩 V ◎ & Rac Oac <Pac Rab Oab (Pab -
Eq.(13a)

a = 0 a = 1

1 0 0 8.2 1 0 0 4.3 1 0 0 2.4 0.2 120 126 0.4 60 90 3.705369622E-01 3.705478488E-01
1.5 0 0 3.4 1.7 0 0 2.3 0 0 0 2.1 0.3 126 108 0.5 90 108 3.291990691E-01 3.291984692E-01
2 1 0 9.8 2 1 0 6.4 2 1 0 5.2 0.3 180 144 0.08 45 135 -1.534697999E-02 -1.534443530E-02
2.5 1 0 6.3 2.7 1 0 1.2 1.5 0 0 4.2 0.17 70 144 0.21 100 126 5.155671059E-03 5.155975858E-03
2.1 1 0 9.3 2.1 1 0 4.5 0.2 0 0 5.3 0.1 126 108 0.4 126 90 1.100592954E-01 1.100546661E-01
2 1 1 10.9 2 1 1 8.4 1 0 0 2.5 0.8 18 162 1.1 90 180 1.217857344E-03 1.217869659E-03

Table 2. Convergence of the series expansion relation for three- 
center integral I210,210,200(9.2,3.8,1.2) as a function of summation 
limit L for Rac = 0.14,房=18o,阳=162o, Rb = 0.24,疆=135o,彻二 
225o and N = 15

L a = 0

1 1.31001409200918E-01
2 1.31001410175056E-01
3 1.31001409878574E-01
4 1.31001409544016E-01
5 1.31001409580279E-01
6 1.31001409581107E-01
7 1.31001409581031E-01
8 1.31001409581032E-01
9 1.31001409581032E-01

10 1.31001409581032E-01
11 1.31001409581032E-01
12 1.31001409581032E-01
13 1.31001409581032E-01
14 1.31001409581032E-01

導M (M)

= 44n\X；(二《1 )xp*(Z； rc1 )Xq (M《1 )dv1, (13b) 

where g = a, b, c,...
By the use of unsymmetrical one-range addition theorems 

for STOs in the charge density expansion approximation (see 
Refs.[15, 16, 20]) and the expansion relations for one-center 
product of STOs,21 the multicenter overlap integrals (10) can 
be reduced to the two-center overlap integrals of two STOs:

，陽(Z, z ' ； Rab) = J x； (z, ra )x；( Z ', rb)dv. (14)

For the calculation of two-center overlap integrals, Eq.(14), 
the efficient computer programs especially useful for large 
quantum number are available in our group.22 Therefore by 
using the computer programs for the overlap integrals one can 
calculate the multicenter multielectron integrals of STOs and 
Coulomb-Yukawa like CIPs with integer and noninteger 
indices that arise in the study of atomic and molecular multi­
electron properties when the HFR and correlated interaction 
potentials approximations are employed.

Thus, we have established a large number of different (a =

Table 3. Convergence of the series expansion relation for three- 
center integral I210,210,200(9.2,3.8,1.2) as a function of summation 
limit M for Ra = 0.14, 3ac = 18o, 阳 = 162o, Ra = 0.24, 0샀〉= 135o, 彻 = 
225o and N = 15, L = 14

M a = 0

1 1.31001409581032E-01
2 1.31001409581032E-01
3 1.31001409581032E-01
4 1.31001409581032E-01
5 1.31001409581032E-01
6 1.31001409581032E-01
7 1.31001409581032E-01
8 1.31001409581032E-01
9 1.31001409581032E-01
10 1.31001409581032E-01
11 1.31001409581032E-01
12 1.31001409581032E-01
13 1.31001409581032E-01
14 1.31001409581032E-01

Table 4. Convergence of the series expansion relation for three- 
center integral I210,210,200(9.2,3.8,1.2) as a function of summation 
limit N for Ra = 0.14, Oac = 18o, pac = 162o, Rb = 0.24, Oab = 135o, pab = 
225o

N a = 0

11 1.28071141096E-01
12 1.31483647851E-01
13 1.30953982079E-01
14 1.31003528062E-01
15 1.31001409581E-01

1, 0, -1, -2, .) sets of series expansion formulae for the arbi­
trary multicenter multielectron integrals which can be chosen 
properly according to the nature of the electronic structure 
problems of atomic and molecular systems under consi­
deration. This is rather important because the choice of the 
series expansion relation set for the multicenter multielectron 
integrals will determine the rate of convergence of the using 
series expansions

Numeric시 Results and Discussion

As an example of application of one-range addition theo­
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rems, the calculations are performed for the nuclear attraction 
integrals determined by Eq. (13a). For this purpose, the com­
puter programs presented in Ref.[22] for overlap integrals are 
used. The results of calculations in atomic units are given in 
Tables 1, 2, 3 and 4.

The convergence properties of the series expansion relation 
for three-center nuclear attraction integral 1 郁邳從(9.2, 3.8, 
1.2) for a = 0 are shown in Tables 2, 3 and 4. The partial 
summations in Eq. (13a) corresponding to progressively in­
creasing upper summation limits are denoted by N, L and M. 
As can be seen from Tables 2 and 3 that the Eq. (13a) displays 
the most rapid convergence to the numerical results with 
twelve digits stable as a functions of summation limits L and 
M. The convergence of the series with respect to L and M is 
rapid. So, in the summations over indices 讨 and af, one can 
include only a few terms. As can be seen from Table 3 that the 
accuracy of computer calculations obtained in the present 
algorithm is satisfactory for N = 15. We see from Table 1 that 
the calculated three-center nuclear attraction integrals with 
the arbitrary values of parameters of Coulomb-Yukawa like 
CIPs show a good rate agreement for a = 0 and a = 1. The 
greater accuracy is attainable by the use of more terms in the 
series expansion formula (13a).

As is clear from our tests that the analytical formulas 
presented in this study are useful tool for exact evaluation of 
the multicenter integrals of Coulomb-Yukawa like CIPs for 

the arbitrary values of quantum numbers, orbital parameters 
and internuclear distances.
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