DOI QR코드

DOI QR Code

Preparation of Hyperbranched Structures of α-Fe2O3

  • Cho, Young-Sik (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University) ;
  • Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials, Dankook University)
  • Published : 2009.06.20

Abstract

Keywords

References

  1. Antonietti, M.; Ozin, G. A. Chem. Eur. J. 2004, 10, 28. https://doi.org/10.1002/chem.200305009
  2. Mann, S. Angew. Chem. Int. Ed. 2000, 2839, 3392.
  3. Song, H. C.; Park, S. H.; Huh, Y. D. Bull. Kor. Chem. Soc. 2007, 28, 477 https://doi.org/10.5012/bkcs.2007.28.3.477
  4. He, K.; Xu, C. Y.; Zhen, L.; Shao, W. Z. Mater. Lett. 2008, 62, 739. https://doi.org/10.1016/j.matlet.2007.06.082
  5. Chen, X.; Wang, X.; Wang, Z.; Yang, X.; Qian, Y. Cryst. Growth Des. 2005, 5, 347. https://doi.org/10.1021/cg0498599
  6. Wu, Z.; Pan, C.; Yao, Z.; Zhao, Q.; Xie, Y. Cryst. Growth Des. 2006, 6, 1717. https://doi.org/10.1021/cg0600501
  7. Ma, Y.; Qi, L.; Ma, J.; Cheng, H. Cryst. Growth Des. 2004, 4, 351. https://doi.org/10.1021/cg034174e
  8. Bandara, J.; Mielczarski, J. A.; Kiwi, J. Langmuir 1999, 15, 7680. https://doi.org/10.1021/la990030j
  9. Hayashi, K.; Iwasaki, K.; Morii, H.; Xia, B.; Okuyama, K. J. Nanopart. Res. 2001, 3, 149. https://doi.org/10.1023/A:1017501412585
  10. Jiang, J. Z.; Lin, R.; Lin, W.; Nielsen, K.; Morup, S.; DamJohansen, K.; Clasen, R. J. Phys. D Appl. Phys. 1997, 30, 1459. https://doi.org/10.1088/0022-3727/30/10/012
  11. NuLi, Y.; Zhang, P.; Guo, Z.; Munroe, P.; Liu, H. Electrochim. Acta 2008, 53, 4213. https://doi.org/10.1016/j.electacta.2007.12.067
  12. Matijevic, E. Chem. Mater. 1993, 5, 412. https://doi.org/10.1021/cm00028a004
  13. Pu, Z.; Cao, M.; Yang, J.; Huang, K.; Hu, C. Nanotech. 2006, 17, 799. https://doi.org/10.1088/0957-4484/17/3/031
  14. Han, Q.; Xu, Y. Y.; Fu, Y. Y.; Zhang, H.; Wang, R. M.; Wang, T. M.; Chen, Z. Y. Chem. Phys. Lett. 2006, 431, 100. https://doi.org/10.1016/j.cplett.2006.09.027
  15. Mitra, S.; Das, S.; Mandal, K.; Chaudhuri, S. Nanotech. 2007, 18, 275608. https://doi.org/10.1088/0957-4484/18/27/275608
  16. Jia, C.; Cheng, Y.; Bao, F.; Chen, D.; Wang, Y. J. Cryst. Growth 2006, 294, 353. https://doi.org/10.1016/j.jcrysgro.2006.06.027
  17. Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.; Wang, Z. L. Angew. Chem. Int. Ed. 2005, 44, 4197. https://doi.org/10.1002/anie.200500448
  18. Zhang, X.; Sui, C.; Gong, J.; Su, Z.; Qu, L. J. Phys. Chem. C 2007, 111, 9049. https://doi.org/10.1021/jp0688310
  19. Hu, X.; Yu, J. C.; Gong, J. J. Phys. Chem. C 2007, 111, 11180. https://doi.org/10.1021/jp073073e
  20. de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. J. Raman Spectr. 1997, 28, 873. https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B

Cited by

  1. Micro-Raman investigations on inclusions of unusual habit in a commercial tanzanite gemstone vol.43, pp.4, 2011, https://doi.org/10.1002/jrs.3059
  2. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel vol.5, pp.1, 2015, https://doi.org/10.1038/srep12454
  3. Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications vol.18, pp.34, 2016, https://doi.org/10.1039/C6CE01307D
  4. Enhancement of Electrochemical Performance by the Oxygen Vacancies in Hematite as Anode Material for Lithium-Ion Batteries vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-016-1783-0
  5. Structural, optical, magnetic and electrical properties of hematite (α-Fe2O3) nanoparticles synthesized by two methods: polyol and precipitation vol.123, pp.12, 2017, https://doi.org/10.1007/s00339-017-1408-1
  6. Asymmetric Supercapacitor vol.164, pp.12, 2017, https://doi.org/10.1149/2.1711712jes
  7. Green Synthesis of Iron Oxide Nanoparticles and Their Catalytic and In Vitro Anticancer Activities vol.28, pp.1, 2017, https://doi.org/10.1007/s10876-016-1082-z
  8. as promising anode materials for high performance lithium-ion batteries vol.5, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaa8c3
  9. Solvent-assisted molten salt process: A new route to synthesise @?-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries vol.55, pp.17, 2010, https://doi.org/10.1016/j.electacta.2010.04.006
  10. Corrosion Behavior of Structural Materials in LiCl-KCl Molten Salt by Thermogravimetric Study vol.71, pp.4, 2015, https://doi.org/10.5006/1341
  11. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials vol.33, pp.7, 2009, https://doi.org/10.1002/aoc.4947