DOI QR코드

DOI QR Code

Synthesis of Platinum Nanostructures Using Seeding Method

  • Han, Sang-Beom (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Song, You-Jung (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Jong-Min (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Kim, Jy-Yeon (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Kim, Do-Hyung (Green Growth Laboratory, Korea Electric Power Research Institute) ;
  • Park, Kyung-Won (Department of Chemical and Environmental Engineering, Soongsil University)
  • Published : 2009.10.20

Abstract

We report Pt hexapod nanoparticles with $6.4\;{\sim}\;9.7$ nm in size by a polyol process in the presence of PVP as a stabilizer and additive as a kinetic controller. The structure and morphology of Pt nanostructures are confirmed by field-emission transmission electron microscopy. The morphological control over platinum nanoparticles is achieved by varying the amount of seeds in the polyol process, where platinum precursor is reduced by ethylene glycol to form Pt nanoparticle at $150\;{^{\circ}C}$. As volume ratio between precursor-solution and seed-solution is increased from 10 to 50, the shape of Pt nanostructures is evolved from small seeds to tripod and hexapod. In addition, the size-controlled platinum hexapod nanostructures are successfully obtained using seeding method.

Keywords

References

  1. Larminie, J.; Dicks, A. Fuel Cell Systems Explained 2000, 133.
  2. Gr$\ddot{a}$tzel, M. Nature 2006, 414, 338.
  3. Kim, S.-S.; Nah, Y.-C.; Noh, Y.-Y.; Jo, J.; Kim, D.-Y. Electrochim. Acta 2006, 51, 3814. https://doi.org/10.1016/j.electacta.2005.10.047
  4. Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. J. Phys. 1995, 99, 3411.
  5. Seo, M.; Yun, Y.; Lee, J.; Tak, Y. J. Power Sources 2006, 159, 59. https://doi.org/10.1016/j.jpowsour.2006.04.090
  6. Han, S.-B.; Song, Y.-J.; Lee, J.-M.; Kim, J.-Y.; Park, K.-W. Electrochem. Commun. 2008, 10, 1044. https://doi.org/10.1016/j.elecom.2008.04.034
  7. Wang, C.; Dimon, H.; Lee, Y.; Kim, J.; Sun, S. J. Am. Chem. Soc. 2007, 129, 6974. https://doi.org/10.1021/ja070440r
  8. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924. https://doi.org/10.1126/science.272.5270.1924
  9. Tao, A. R.; Sinsermsuksakul, P.; Yang, P. Angew.Chem. 2006, 118, 4713 https://doi.org/10.1002/ange.200601277
  10. Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; and Yang, P. J. Phys. Chem. B 2005, 109, 188. https://doi.org/10.1021/jp0464775
  11. Jun, Y.-W.; Choi, J.-S.; Cheon, J. Angew. Chem. 2006, 118, 3492. https://doi.org/10.1002/ange.200503821
  12. Mullin, J. W. Crystallization, 4th ed.; Elsevier: Oxford, 2001; 216.
  13. Wulff, G. Z. Kristallogr. 1901, 34, 449.
  14. Fievet, F. J.; Lagier, P.; Blin, B.; Beaudoin, B.; Figlarz, M. Solid State Ionics 1989, 198, 32.
  15. Maksimuk, S.; Teng, X.; Yang, H. J. Phys. Chem. C 2007, 111, 14312. https://doi.org/10.1021/jp074724+
  16. Herricks, T.; Chen, J.; Xia, Y. Nano Letters 2004, 4, 2367. https://doi.org/10.1021/nl048570a
  17. Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. J. Phys. Chem. B 2005, 109, 188. https://doi.org/10.1021/jp0464775
  18. Tao, A. R.; Habas, S.; Yang, P. Small 2008, 4, 310. https://doi.org/10.1002/smll.200701295

Cited by

  1. Strategies for the Fabrication of Porous Platinum Electrodes vol.23, pp.43, 2009, https://doi.org/10.1002/adma.201102182