DOI QR코드

DOI QR Code

Conformational Analysis of Trimannoside and Bisected Trimannoside Using Aqueous Molecular Dynamics Simulations

  • Kim, Hyun-Myung (Department of Advanced Technology Fusion, Konkuk University) ;
  • Choi, Young-Jin (Biochip Research Center, Hoseo University) ;
  • Lee, Jong-Hyun (Department of Advanced Technology Fusion, Konkuk University) ;
  • Jeong, Karp-Joo (Department of Advanced Technology Fusion, Konkuk University) ;
  • Jung, Seun-Ho (Department of Bioscience and Biotechnology & Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2009.11.20

Abstract

The conformational properties of oligosaccharides are important to understand carbohydrate-protein interactions. A trimannoside, methyl 3,6-di-O-($\alpha$-D-Man)-$\alpha$-D-Man (TRIMAN) is a basic unit of N-linked oligosaccharides. This TRIMAN moiety was further modified by GlcNAc (BISECT), which is important to biological activity of N-glycan. To characterize the trimannoside and its bisecting one we performed a molecular dynamics simulation in water. The resulting models show the conformational transition with two major and minor conformations. The major conformational transition results from the $\omega$ angle transition; another minor transition is due to the $\psi$ angle transition of $\alpha$ (1 $\rightarrow$ 6) linkage. The introduction of bisecting GlcNAc on TRIMAN made the different population of the major and minor conformations of the TRIMAN moiety. Omega ($\omega$) angle distribution is largely changed and the population of gt conformation is increased in BISECT oligosaccharide. The inter-residue hydrogen bonds and water bridges via bisecting GlcNAc residue make alterations on the local and overall conformation of TRIMAN moiety. These changes of conformational distribution for TRIMAN moiety can affect the overall conformation of N-glycan and the biological activity of glycoprotein.

Keywords

References

  1. Taniguchi, N.; Yoshimura, M.; Miyoshi, E.; Ihara, Y.; Nishikawa, A.; Fujii, S. Glycobiology 1996, 6, 691 https://doi.org/10.1093/glycob/6.7.691
  2. Yoshimura, M.; Nishikawa, A.; Ihara, Y.; Taniguchi, S.; Taniguchi, N. Proc. Natl. Acad. Sci. USA 1995, 92, 8754 https://doi.org/10.1073/pnas.92.19.8754
  3. Li, W.; Takahashi, M.; Shibukawa, Y.; Yokoe, S.; Gu, J.; Miyoshi, E.; Honke, K.; Ikeda, Y.; Taniguchi, N. Glycobiology 2007, 17, 655 https://doi.org/10.1093/glycob/cwm022
  4. Andre, S.; Unverzagt, C.; Kojima, S.; Frank, M.; Seifert, J.; Fink, C.; Kayser, K.; von der Lieth, C.-W.; Gabius, H.-J. Eur. J. Biochem. 2004, 271, 118 https://doi.org/10.1046/j.1432-1033.2003.03910.x
  5. Brisson, J. R.; Carver, J. P. Biochemistry 1983, 22, 3671 https://doi.org/10.1021/bi00284a021
  6. Brisson, J. R.; Carver, J. P. Biochemistry 1983, 22, 3680 https://doi.org/10.1021/bi00284a022
  7. Rutherford, T. J.; Homans, S. W. Biochemistry 1994, 33, 9606 https://doi.org/10.1021/bi00198a029
  8. Balaji, P. V.; Qasba, P. K.; Rao, V. S. R. Int. J. Biol. Macromol. 1996, 18, 101 https://doi.org/10.1016/0141-8130(95)01064-5
  9. Qasba, P. K.; Balaji, P. V.; Rao, V. S. R. J. Mol. Struct. 1997, 395-396, 333 https://doi.org/10.1016/S0166-1280(96)04543-5
  10. Brisson, J. R.; Carver, J. P. Biochemistry 1983, 22, 1362 https://doi.org/10.1021/bi00275a007
  11. Sayers, E. W.; Prestegard, J. H. Biophys. J. 2000, 79, 3313 https://doi.org/10.1016/S0006-3495(00)76563-5
  12. Almond A.; Duus J. $\phi$. J. Biomol. NMR 2001, 20, 351 https://doi.org/10.1023/A:1011290326112
  13. Almond, A. Carbohydr. Res. 2005, 340, 907 https://doi.org/10.1016/j.carres.2005.01.014
  14. Igarashi, T.; Araki, S.; Mori, H.; Takeda, S. FEBS Lett. 2007, 581, 2416 https://doi.org/10.1016/j.febslet.2007.04.057
  15. Case, D. A.; Darden, T. A.; Cheatham, T. E. et al. AMBER 10, University of California, San Francisco, 2008
  16. Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. J. Comput. Chem. 2008, 29, 622 https://doi.org/10.1002/jcc.20820
  17. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Imprey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926 https://doi.org/10.1063/1.445869
  18. Shao, J.; Tanner, S. W.; Thompson, N.; Cheatham, T. E. 3rd. J. Chem. Theory Comput. 2007, 3, 2312 https://doi.org/10.1021/ct700119m
  19. Dowd, M. K.; French, A. D. J. Carbohyd. Chem. 1995, 14, 589 https://doi.org/10.1080/07328309508005360
  20. Homans, S. W.; Pastore, A.; Dwek, R. A.; Rademacher, T. W. Biochemistry 1987, 26, 6649 https://doi.org/10.1021/bi00395a014
  21. Wormald, M. R.; Petrescu, A. J.; Pao, Y.-L.; Glithero, A.; Elliott, T.; Dwek, R. A. Chem. Rev. 2002, 102, 371 https://doi.org/10.1021/cr990368i
  22. Spronk, B. A.; Rivera-Sagredo, A.; Kamerling, J. P.; Vliegenthart, J. F. G. Carbohydr. Res. 1995, 273, 11 https://doi.org/10.1016/0008-6215(95)00061-W
  23. Kirschner, K. N.; Woods, R. J. Proc. Natl. Acad. Sci. USA 2001, 98, 10541 https://doi.org/10.1073/pnas.191362798
  24. Woods, R. J.; Pathiaseril, A.; Wormald, C. J.; Dwek, R. A. Eur. J. Biochem. 1998, 258, 372 https://doi.org/10.1046/j.1432-1327.1998.2580372.x
  25. Corzana, F.; Motawia, M. S.; Penhoat, C. H.; Berg, F.; Blennow, A.; Perez, S.; Engelsen, S. B. J. Am. Chem. Soc. 2004, 126, 13144 https://doi.org/10.1021/ja048622y

Cited by

  1. Effect of Bisecting GlcNAc and Core Fucosylation on Conformational Properties of Biantennary Complex-Type N-Glycans in Solution vol.116, pp.29, 2012, https://doi.org/10.1021/jp212550z
  2. Conformational flexibility of N-glycans in solution studied by REMD simulations vol.4, pp.3, 2012, https://doi.org/10.1007/s12551-012-0090-y
  3. Conformational Analysis of Furanoside-Containing Mono- and Oligosaccharides vol.113, pp.3, 2013, https://doi.org/10.1021/cr300249c
  4. Structural Diversity and Changes in Conformational Equilibria of Biantennary Complex-Type N-Glycans in Water Revealed by Replica-Exchange Molecular Dynamics Simulation vol.101, pp.10, 2009, https://doi.org/10.1016/j.bpj.2011.10.019