References
- Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. https://doi.org/10.1021/cr0683966
- Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. https://doi.org/10.1021/cr980054f
- Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. https://doi.org/10.1021/ar010068z
- Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. https://doi.org/10.1021/cr980054f
- Trost, B. M. Acc. Chem. Res. 2002, 35, 695. https://doi.org/10.1002/anie.200503863
- Ma, S. Eur. J. Org. Chem. 2004, 1175. https://doi.org/10.1021/ol7026569
- Mandai, T. In Modern Allene Chemistry, Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, pp 925-972. https://doi.org/10.1039/jr9630005385
- Yu, C.-M.; Youn, J.; Jung, J. Angew. Chem. Int. Ed. 2006, 45, 1553. https://doi.org/10.1016/j.tet.2008.01.009
- Yu, C.-M.; Hong, Y.-T.; Lee, J. J. Org. Chem. 2004, 69, 8506. https://doi.org/10.1021/ja0684186
- Yu, C.-M.; Hong, Y.-T.; Yoon, S.-K.; Lee, J. Synlett 2004, 1695.
- Yu, C.-M.; Youn, J.; Lee, M.-K. Org. Lett. 2005, 7, 3733. https://doi.org/10.1021/ol0513701
- Yu, C.-M.; Youn, J.; Jung, H.-K. Bull. Korean Chem. Soc. 2006, 27, 463. https://doi.org/10.5012/bkcs.2006.27.4.463
- Ko, K.-J.; Kim, S. H.; Kim, Y.; Min, D.; Yu, C.-M. Bull. Korean Chem. Soc. 2007, 28, 1921. https://doi.org/10.5012/bkcs.2007.28.11.1921
- Kim, S. H.; Oh, S.-J.; Ho, P.-S.; Kang, S.-C.; O, K.-J.; Yu, C.-M. Org. Lett. 2008, 10, 265. https://doi.org/10.1021/ol7026569
- Brookes, D.; Tidd, B. K.; Turner, W. B. J. Chem. Soc. 1963, 5385. https://doi.org/10.1039/jr9630005385
- McCorkindale, N. J.; Wright, J. L. C.; Brain, P. W.; Clarke, S. M.; Hutchinson, S. A. Tetrahedron Lett. 1968, 9, 727. https://doi.org/10.1016/S0040-4039(00)75621-8
- Krohn, K.; Ludewig, K.; Aust, H. J.; Draeger, S.; Schulz, B. J. Antibiot. 1994, 47, 113. https://doi.org/10.7164/antibiotics.47.113
- Mondal, S.; Ghosh, S. Tetrahedron 2008, 64, 2359. https://doi.org/10.1016/j.tet.2008.01.009
- Hon, Y. S.; Hsieh, C. H. Tetrahedron 2006, 62, 9713. https://doi.org/10.1016/j.tet.2006.07.066
- Aggarwal, V. K. Davies, P. W. Schmidt, A. T. Chem. Commun. 2004, 1232.
- Martin, V. S. Rodriguez, C. M. Martin, T. Org. Prep. Proc. Int. 1998, 30, 291 https://doi.org/10.1080/00304949809355291
- Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 778. https://doi.org/10.1021/ja0684186
- Brummond, K. M.; Curran, D. P.; Mitasev, B.; Fischer, S. J. Org. Chem. 2005, 70, 1745. https://doi.org/10.1021/jo0481607
- Cao, H.; Van Ornui, S. G.; Deschamps, J.; Flippen-Anderson, J.; Laib, F.; Cook, J. M. J. Am. Chem. Soc. 2005, 127, 933. https://doi.org/10.1021/ja040120x
Cited by
- Three Carbons for Complexity! Recent Developments of Palladium-Catalyzed Reactions of Allenes vol.5, pp.8, 2013, https://doi.org/10.1002/cctc.201200875
- Total Synthesis of (−)-Dihydrosporothriolide Utilizing an Indium-Mediated Reformatsky–Claisen Rearrangement vol.79, pp.12, 2014, https://doi.org/10.1021/jo5008948
- : Synthesis of Canadensolide and Sporothriolide. vol.40, pp.36, 2009, https://doi.org/10.1002/chin.200936207
- Intramolecular Carbocyclization of Allenoate-aldehydes with Hexamethylditin Catalyzed by Palladium Complex: Synthesis of Cyclic Dienes vol.31, pp.3, 2009, https://doi.org/10.5012/bkcs.2010.31.03.559
- An Intramolecular Cyclocarbonylation of Allenyl Sulfinimides by Molybdenum Carbonyl for the Synthesis of Bicyclic 3-Methylene-1-pyrrol-2-ones vol.32, pp.8, 2009, https://doi.org/10.5012/bkcs.2011.32.8.2873
- Progress in the Total Synthesis of Natural Products Embodying Diverse Furofuranone Motifs: A New Millennium Update vol.9, pp.11, 2009, https://doi.org/10.1002/ajoc.202000401
- Seven-Step Total Synthesis of Sporothriolide vol.86, pp.17, 2009, https://doi.org/10.1021/acs.joc.1c01663