DOI QR코드

DOI QR Code

Structure Related Photocatalytic Properties of TiO2

  • Park, Ju-Young (Department of Chemistry and Institute of Basic Natural Sciences, Wonkwang University) ;
  • Lee, Chang-Hoon (Department of Chemistry, North Carolina State University) ;
  • Jung, Kwang-Woo (Department of Chemistry and Institute of Basic Natural Sciences, Wonkwang University) ;
  • Jung, Dong-Woon (Department of Chemistry and Institute of Basic Natural Sciences, Wonkwang University)
  • Published : 2009.02.20

Abstract

The band structures and the densities of states at the Fermi energy for rutile, anatase and brookite phases are investigated along with the structure-photocatlaytic relationship by using DFT method. Bands are less dispersive in anatase phase than in rutile phase, and they are almost flat in brookite phase. As a result, the DOS value near the Fermi energy for brookite is highest among three types of $TiO_{2}$, which means that the numbers of electrons near the Fermi energy are largest in brookite. The calculation shows that brookite phase may exhibit highest photocatalytic efficiency among three types of $TiO_{2}$.

Keywords

References

  1. Zheng, Y.; Shi, E.; Chen, Z.; Li, W.; Hu, X. J. Mater. Chem. 2001, 11, 1547. https://doi.org/10.1039/b009203g
  2. Kim, S. J.; Park, S. D.; Jeong, Y. H. J. Am. Ceram. Soc. 1999, 82, 927. https://doi.org/10.1111/j.1151-2916.1999.tb01855.x
  3. Yang, Y.; Mei, S.; Ferreira, J. M. J. Am. Ceram. Soc. 2000, 83, 1361. https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
  4. Zheng, Y.; Shi, E.; Chi, S.; Li, W.; Hu, X. J. Am. Ceram. Soc. 2000, 83, 2634. https://doi.org/10.1111/j.1151-2916.2000.tb01605.x
  5. Pottier, A.; Chaneac, C.; Tronc, E.; Mazerolles, L.; Jolivet, J. J. Mater. Chem. 2001, 11, 1116. https://doi.org/10.1039/b100435m
  6. Zheng, Y.; Shi, E.; Chi, S.; Li, W.; Hu, X. J. Mater. Sci. Lett. 2000, 1445.
  7. Kominami, H.; Kohno, M.; Kera, Y. J. Mater. Chem. 2000, 10, 1151. https://doi.org/10.1039/a908528i
  8. Lee, J. H.; Yang, Y. S. Mater. Chem. Phys. 2005, 93, 237. https://doi.org/10.1016/j.matchemphys.2005.03.020
  9. Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133. https://doi.org/10.1103/PhysRev.140.A1133
  10. Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.;Clark, S.; Payne, M. J. Phys.: Condens. Matter 2002, 14, 2717. https://doi.org/10.1088/0953-8984/14/11/301
  11. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  12. Monkhorst, J. H.; Pack, J. Phys. Rev. B 1976, 13, 5188. https://doi.org/10.1103/PhysRevB.13.5188
  13. Kim, S. W.; Khan, R.; Kim, T. J.; Kim, W. H. Bull. Korean Chem. Soc. 2008, 29(6), 1217. https://doi.org/10.5012/bkcs.2008.29.6.1217
  14. Chakraborty, A. K.; Chai, S. Y.; Lee, W. I. Bull. Korean Chem. Soc. 2008, 29(2), 494. https://doi.org/10.5012/bkcs.2008.29.2.494

Cited by

  1. The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method vol.109, pp.2, 2012, https://doi.org/10.1007/s00339-012-7265-z
  2. vol.116, pp.37, 2012, https://doi.org/10.1021/jp302342t
  3. Toward tailored functionality of titania nanotube arrays: Interpretation of the magnetic-structural correlations vol.28, pp.10, 2013, https://doi.org/10.1557/jmr.2013.94
  4. Brookite, the Least Known TiO2 Photocatalyst vol.3, pp.1, 2013, https://doi.org/10.3390/catal3010036
  5. Surface Properties on Water Pollution Treatment and Photocatalytic Activity vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.953
  6. on TiC{111} Surface vol.5, pp.21, 2014, https://doi.org/10.1021/jz501775a
  7. on the Pristine and Oxidized TiC Surface by First-principles Calculation vol.119, pp.46, 2015, https://doi.org/10.1021/acs.jpcc.5b06492
  8. Multi-doped Brookite-Prevalent TiO2 Photocatalyst with Enhanced Activity in the Visible Light vol.148, pp.8, 2018, https://doi.org/10.1007/s10562-018-2463-8
  9. Progress of Nanocomposite Membranes for Water Treatment vol.8, pp.2, 2018, https://doi.org/10.3390/membranes8020018
  10. nanoparticles immobilized on a glass plate pp.1563-5201, 2020, https://doi.org/10.1080/00986445.2019.1573168
  11. Influence of calcination parameters on the TiO2 photocatalytic properties vol.125, pp.1, 2009, https://doi.org/10.1016/j.matchemphys.2010.08.019
  12. Structural, elastic, electronic and optical properties of various mineral phases of TiO2 from first-principles calculations vol.89, pp.7, 2009, https://doi.org/10.1088/0031-8949/89/7/075703
  13. Computational study of dye adsorption onto Brookite TiO2surfaces for the applications in dye sensitized solar cells vol.905, pp.None, 2009, https://doi.org/10.1088/1742-6596/905/1/012034
  14. Anatase/Rutile TiO 2 composite thin films prepared via dip coating technique and their hydrophilicity, stability and photocatalytic activity vol.5, pp.5, 2009, https://doi.org/10.1016/j.matpr.2018.01.002
  15. Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: A review vol.9, pp.1, 2009, https://doi.org/10.1515/ntrev-2020-0085
  16. New Understanding of the Difference in Filtration Performance between Anatase and Rutile TiO2 Nanoparticles through Blending into Ultrafiltration PSF Membranes vol.11, pp.11, 2009, https://doi.org/10.3390/membranes11110841