DOI QR코드

DOI QR Code

Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System

  • Borse, Pramod H. (Center for Nanomaterials, International Advanced Research Center for Powder Metallurgy and New Materials (ARC International),Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Yoon, Sang-Su (Department of Chemistry (BK21), Pusan National University) ;
  • Jang, Jum-Suk (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Jae-Sung (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Hong, Tae-Eun (Busan Center, Korea Basic Science Institute) ;
  • Jeong, Euh-Duck (Busan Center, Korea Basic Science Institute) ;
  • Won, Mi-Sook (Busan Center, Korea Basic Science Institute) ;
  • Jung, Ok-Sang (Department of Chemistry (BK21), Pusan National University) ;
  • Shim, Yoon-Bo (Department of Chemistry (BK21), Pusan National University) ;
  • Kim, Hyun-Gyu (Busan Center, Korea Basic Science Institute)
  • Published : 2009.12.20

Abstract

Structural and thermo-analytical studies were carried out to understand the phase formation kinetics of the single phase $Bi_5Ti_3FeO_{15}$ (BTFO) nanocrystals in $Bi_2O_3-Fe_2O_3-TiO_2$, during the polymerized complex (PC) synthesis method. The crystallization of Aurivillius phase $Bi_5Ti_3FeO_{15}$ layered perovskite was found to be initiated and achieved under the temperature conditions in the range of ${\sim}$800 to 1050$^{\circ}C$. The activation energy for grain growth of $Bi_5Ti_3FeO_{15}$ nanocrystals (NCs) was very low in case of NCs formed by PC (2.61 kJ/mol) than that formed by the solid state reaction (SSR) method (10.9 kJ/mol). The energy involved in the phase transformation of Aurivillius phase $Bi_5Ti_3FeO_{15}$ from $Bi_2O_3-Fe_2O_3-TiO_2$ system was ${\sim}$ 69.8 kJ/mol. The formation kinetics study of $Bi_5Ti_3FeO_{15}$ synthesized by SSR and PC methods would not only render a large impact in the nanocrystalline material development but also in achieving highly efficient visible photocatalysts.

Keywords

References

  1. Kim, H. G.; Hwang, D. W.; Lee, J. S. J. Am. Chem. Soc. 2004, 126, 8912 https://doi.org/10.1021/ja049676a
  2. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286 https://doi.org/10.1021/ja0518777
  3. Kim, S. W.; Khan, R.; Kim, T. J.; Kim, W. Bull. Korean Chem. Soc. 2008, 29, 1217 https://doi.org/10.5012/bkcs.2008.29.6.1217
  4. Hitoki, G.; Takata, T.; Kondo, J.; Hara, M.; Kobayashi, H.; Domen K. Chem. Commun. 2002, 1698 https://doi.org/10.1039/b202393h
  5. Asahi, R.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269 https://doi.org/10.1126/science.1061051
  6. Khan, S. M.; Al-Shahry, M.; Jr. Lngler, W. B. Science 2002, 297, 2243 https://doi.org/10.1126/science.1075035
  7. Sakthivel, S.; Kisch, H. Angew. Chem. Int. Ed. 2003, 42, 4908 https://doi.org/10.1002/anie.200351577
  8. Subramanian, E.; Baeg, J.; Kale, B. B.; Lee, S. M.; Moon, S.; Kong, K. Bull. Korean Chem. Soc. 2007, 28, 2089 https://doi.org/10.5012/bkcs.2007.28.11.2089
  9. Jang, J. S.; Borse, P. H.; Lee, J. S.; Choi, S. H.; Kim, H. G. J. Chem. Phys. C 2008, 128, 154717 https://doi.org/10.1063/1.2900984
  10. Jang, J. S.; Kim, H. G.; Borse, P. H.; Lee, J. S. Inter. J. Hydrogen Energy 2007, 32, 4786 https://doi.org/10.1016/j.ijhydene.2007.06.026
  11. Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J. W.; Lee, J. S. Inter. J. Hydrogen Energy 2008, 33, 5975 https://doi.org/10.1016/j.ijhydene.2008.07.105
  12. Kim, H. G.; Borse, P. H.; Choi, W.; Lee, J. S. Angew. Chem. Int. Ed. 2005, 44, 45859
  13. Kim, H. G.; Jeong, E. D.; Borse, P. H.; Jeon, S.; Yong, K.; Lee, J. S.; Li, W.; Oh, S. H. Appl. Phys. Lett. 2006, 89, 064103 https://doi.org/10.1063/1.2266237
  14. Jang, J. S.; Hwang, D. W.; Lee, J. S. Catal. Today 2007, 120, 174 https://doi.org/10.1016/j.cattod.2006.07.052
  15. Sun, S.; Wang, W.; Xu, H.; Zhou, L.; Shang, M.; Zhang, L. J. Phys. Chem. C 2008, 112, 17835 https://doi.org/10.1021/jp807379c
  16. Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91, 193 https://doi.org/10.1023/B:CATL.0000007154.30343.23
  17. Jung, E. D.; Borse, P. H.; Jang, J. S.; Lee, J. S.; Cho, C. R.; Bae, J. S.; Park, S.; Jung, O. S.; Ryu, S. M.; Kim, H. G. J. Nanosci. Nanotech. 2008, 9, 3568 https://doi.org/10.1166/jnn.2009.NS31
  18. Zhiqiang, Y.; Choi, K. M.; Jiang, N.; Park, S. E. Bull. Korean Chem. Soc. 2007, 28, 2029 https://doi.org/10.5012/bkcs.2007.28.11.2029
  19. Cullity, B. D. Elements of X-ray Diffraction, 2nd Edition; Addison- Wesley Publishing Company, Inc.: Reading, MA, 1978
  20. Aurivillius, B. 1st Edition, Ark. Kemi. 1949, 1, 463
  21. Subbaro, E. C. Phys. Rev. 1961, 122, 804 https://doi.org/10.1103/PhysRev.122.804
  22. Coble, R. L. J. Appl. Phys. 1961, 32, 787 https://doi.org/10.1063/1.1736107
  23. Jarcho, M.; Bolen, C. H.; Doremus, R. H. J. Mater. Sci. 1976, 11, 2027 https://doi.org/10.1007/BF02403350
  24. Kissinger, H. E. J. Res. Natl. Bur: Stand. (US) 1956, 57, 217 https://doi.org/10.6028/jres.057.026

Cited by

  1. Structural and electrical properties of Bi2La3Ti3FeO15 ceramics vol.27, pp.1, 2016, https://doi.org/10.1007/s10854-015-3771-z
  2. Structural and electrical properties of Bi3La2Ti3FeO15 ceramics vol.27, pp.9, 2016, https://doi.org/10.1007/s10854-016-4949-8