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In most parallel loops of embedded applications, every  
iteration executes the exact same sequence of instructions 
while manipulating different data. This fact motivates a new 
compiler-hardware orchestrated execution framework in 
which all parallel threads share one fetch unit and one 
decode unit but have their own execution, memory, and 
write-back units. This resource sharing enables parallel 
threads to execute in lockstep with minimal hardware 
extension and compiler support. Our proposed architecture, 
called multithreaded lockstep execution processor (MLEP), 
is a compromise between the single-instruction multiple-data 
(SIMD) and symmetric multithreading/chip multiprocessor 
(SMT/CMP) solutions. The proposed approach is more 
favorable than a typical SIMD execution in terms of degree 
of parallelism, range of applicability, and code generation, 
and can save more power and chip area than the SMT/CMP 
approach without significant performance degradation. For 
the architecture verification, we extend a commercial 32-bit 
embedded core AE32000C and synthesize it on Xilinx 
FPGA. Compared to the original architecture, our approach 
is 13.5% faster with a 2-way MLEP and 33.7% faster with a 
4-way MLEP in EEMBC benchmarks which are 
automatically parallelized by the Intel compiler. 
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I. Introduction 

Intrinsically embedded applications have a high degree of 
parallelism on several levels, such as data, instruction, and thread 
levels [1], [2]. However, it is difficult to exploit that parallelism 
because real embedded platforms are composed of very simple 
cores due to manufacturing cost, chip area, power consumption, 
and thermal dissipation. Therefore, it is very costly and maybe 
impractical to use the state-of-the-art high performance 
processors like superscalars [3], simultaneous multithreading [4], 
and so on, in embedded systems. One promising approach is to 
use several simple processors on one chip such as chip 
multiprocessors (CMPs). Recently, many industry vendors have 
introduced CMPs targeted for embedded applications [5], [6]. 
The CMP consumes less energy than superscalar and symmetric 
multithreading (SMT) architectures in applications to exploit 
high thread-level parallelism, but still consumes much power and 
resources. For example, the power consumption and resource 
complexity in the two processors of the ARM11TM MPCore are 
2.25 and 2.17 times higher than those of a single core.  

Another attractive approach to achieve high performance in 
embedded codes is to employ single-instruction multiple-data 
(SIMD) execution. We experimentally applied the Intel 
compiler 9.1.042 to automatically simdize several of the EDN 
Embedded Microprocessor Benchmarking Consortium 
(EEMBC) benchmarks [7] selected from [8]. Figure 1 shows 
the percentage of the total execution time spent in simdized and 
parallelized regions automatically identified by the compiler, 
and it was very low. For measurement, we used the number of 
executed cycles on our synthesized experimental processor, 
AE32000C, on FPGA [9]. The compiler cannot exploit data 
level parallelism (DLP) in many highly parallel loops due to 
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Fig. 1. Percentage of the total execution time spent in simdized
and parallelized loops automatically identified by the Intel
compiler. 
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their enclosing pointers, mixed data types, function calls, 
branches, dependences, and so on, especially in rgbhpg, 
bezierfixed, and bezierfloat [10]. It is well known that it is not 
possible to simply simdize codes without aggressively 
restructuring and rewriting applications [11], [12]. The Intel 
compiler also fails to identify parallel loops due to unknown 
loop trip counts, unidentifiable private variables, and so on. In 
our test result, however, it exploits higher parallelism in loop 
parallelization (icc-thread in Fig. 1) than in simdization (icc-
simd). The compiler can automatically identify loop-level 
parallelism (LLP) in almost all simdizable and non-simdizable 
loops. The DLP is normally expressed in forms of loops in 
embedded codes. It is easier for the compiler and programmer 
to detect LLP than DLP. By eliminating the limited 
applicability of SIMD instruction set architecture (ISA) and 
parallelizing the outermost loops rather than the innermost ones, 
thread-based parallel execution from LLP can express more 
parallelism than SIMD/vector execution in general. 

In this paper, we propose a new processor architecture, called 
multithreaded lockstep execution processor (MLEP), which 
overcomes the resource cost of CMPs and the limited 
applicability of simdization of SIMD machines. Our 
architecture exploits thread-level parallelism (TLP) as in 
SMT/CMP from LLP, but it executes parallel threads in 
lockstep as in SIMD by translating TLP into statically 
scheduled instruction level parallelism (ILP) by a compiler. On 
CMPs and SMTs, each thread executes its own code sections 
independently with appropriate synchronizations. In most 
parallel loops of embedded applications, however, every 
iteration executes the exact same sequence of instructions 
while processing different data. If a group of threads executes 
the identical code sequence, transferring the code to processors 
and then fetching and decoding them separately is not an 
optimal method. Instruction fetch and decode units can be 
shared among threads. Each thread only needs private 
execution, memory, and write-back units. Sharing allows 
parallel threads to execute in lockstep, as in SIMD execution. 

 

Fig. 2. Upperbound of speedup on our architecture with 2 and 4 
threads in hand-parallelized codes. 
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Our approach has advantages over SIMD execution in terms of 
applicable range and code generation because it can use normal 
instruction sets without restriction. Also, by using one 
instruction fetch unit and one instruction decode unit for 
parallel executions, our approach use less power and chip area 
than a chip multiprocessor without significant loss of 
performance in embedded applications. 

Our proposal is based on the following observations. Most 
embedded applications can be highly parallelized to exploit 
TLP. Parallel loops consume the most execution time, and all 
threads execute the exact same code sequence in most cases. 
We marked the starting and ending points of parallel loops 
identified in EEMBC benchmarks [8], and measured the 
number of total execution cycles to calculate the potential 
speedup [9] on our experimental processor. Figure 2 shows an 
upperbound speedup in two categories by applying Amdahl’s 
Law with 2 and 4 threads. The category “same” indicates the 
ideal speedup achieved by parallel codes which do not include 
any if-else/switch clause; therefore, it is guaranteed that all 
threads execute the same code sequence. That is, code 
sequences are syntactically identical. The category “different” 
indicates speedup when it is assumed that two threads execute 
the same code sequence even if there are if-else/switch clauses 
inside parallel loops. The achieved speedup is very high. All 
benchmarks have an ideal speedup of 1.76 in the 2-way MLEP 
and 3.01 in the 4-way MLEP on average, and five of them 
achieve ideal speedup. 
Figure 3 shows the distribution of dynamic instructions in 

parallel and serial regions. The ratio of branch instructions in 
parallel regions is less than 1%, which implies that the 
possibility of control-flow conflict between threads is very low. 
In other words, there are very few conditional clauses, such as 
if-else/switch clauses. They are in only in four of the 
benchmarks in Fig. 2. This implies that parallel threads execute 
the same code sequence most of the time. Memory instructions 
in parallel regions are about 20% of the total instructions on 
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Fig. 3. Distribution of dynamic instructions in parallel (P_*) and
serial (S_*) code sections in Fig. 2. 
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average. Therefore, a data cache is needed which can process 
multiple memory instructions from threads simultaneously to 
achieve good performance. 

Our experiment shows that in comparison with the original 
architecture, our proposed architecture achieved speeds 1.14 and 
1.34 times faster on average and up to 1.98 and 3.86 times faster 
in automatically parallelized EEMBC embedded benchmarks 
with increases of 62.2% and 182.9% in complexity and 41.9% 
and 124.9% in power consumption with 2-way MLEP and    
4-way MLEP, respectively. Speed improvements of 1.44 and 
1.83 were also achieved in hand-parallelized codes on 2-way 
MLEP and 4-way MLEP, respectively. 
The remainder of this paper is organized as follows. In section 

II, we introduce the overall organization of our architecture, 
and in the next section, we present its implementation. Section 
IV analyzes its performance. Related works are discussed in 
section V, and the last section summarizes our research. 

II. Architecture Overview 

We explain the execution behavior of our architecture, MLEP, 
with examples of 2-thread execution. If two threads execute the 
same instruction sequence as shown in Fig. 4, one instruction 
fetch unit and one decode unit are sufficient for multithreading 
execution (see section III.3.A for details). When two threads 
execute different control-flows, only one thread becomes active 
at a time, and in a predefined scheduling order, as shown in   
Fig. 5. When the divergence ends, two threads are synchronized 
for their following simultaneous execution. We need a 
mechanism that threads know where they are synchronized. We 
introduced a barrier instruction, inserted by our compiler, to mark 
a synchronization point, where threads are guaranteed to join. 
This approach does not incur large overhead, since the number 
of executed branch instructions is very small as shown in Fig 3. 
This case also covers the odd number of loop iterations (see 

 

Fig. 4. Execution of the same control-flow in a parallel loop. The 
shaded boxes represent the executed code sections in the 
loop body. 
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Fig. 5. Execution of a different control-flow in a parallel loop. 
The shaded boxes represent the executed code sections in 
the loop body. 
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section III.3.B for details) In general, there is high spatial data 
locality of memory references in two sequences of loop 
iterations. Therefore, in order to use one shared data cache and 
to exploit high spatial locality, we use cyclic scheduling. In Fig. 
4, a constant 1 is stored in both a[i] and a[i+1] at the same time; 
therefore, we may store two words at one time with address 
a[i] instead of accessing the data cache twice. We can take this 
opportunity to achieve better speedup only with small 
modification of an interface between a data cache and a core, 
and its details are described in section III.4. 

In order to verify the above working principle, we 
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Fig. 6. Hardware architecture overview for 2-way MLEP. The
cross-lined boxes and dashed lines were added for our
purpose. 
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implemented the idea by modifying the AE32000C core which 
is a standard single 5-stage pipeline microprocessor 
architecture [9]. The overview of our architecture for 2-way 
extension is shown in Fig. 6, and our modification is marked as 
cross-lined boxes and dashed lines. Our prototyped processor 
supports 2 to 4 threads. However, since our solution can handle 
control-flow conflicts for any number of threads, it is 
completely scalable. Also, the achieved speed improvement is 
scalable with the number of cores. As shown in Fig. 6, the fetch 
unit was kept the same as that in the original architecture. The 
decode unit was changed a little to support thread control 
instructions. The memory and write-back units were modified 
to support multiple memory accesses at the same time. There 
are two approaches to developing register files. With one 
approach original register files are duplicated, and with the 
other, they are not. This register file duplication problem is 
explained in detail in section III.2. Also, some special registers 
and buses were added in our architecture.  

III. Architecture Implementation 

1. Code Generation 

We used a typical code generation scheme for a shared-
memory system. OpenMP directives are used to identify 
parallel loops [13], and the Omni compiler is used to translate 
OpenMP codes into subroutine-based forms in order to provide 
stack space to each thread to handle thread private variables 
[14]. The Omni OpenMP runtime library was modified in 
order to use our thread libraries instead of PThread. The 
translated codes are compiled by the gcc-based EISC compiler 
and linked with our libraries to build executable codes [15]. 

2. Core Extension for Multithreading 

The minimum resources needed for one independent thread 
execution are an execution unit, a private register file and a 
separate stack-space. We provided each thread with a private 
execution unit and a private stack space. However, with the 
register file we provided two options: a basic approach and an 
extended approach. In the basic approach, to minimize 
resource usage and power consumption we do not duplicate 
the original register file (16 general registers, R0-R15 in 
AE32000C). The original general register file is divided into 
several identical banks for parallel execution. In serial 
execution, the processor uses all general registers, but in 
parallel, each thread uses a half for two threads and a quarter of 
all general registers for four threads. We rely on our compiler to 
generate codes using only a half or a quarter of general 
registers (R0-R7 or R0-R3) for parallel sections. A register 
rename unit was added in front of the child threads to rename 
instruction register operands from R0-R7 to R8-R15 for two 
threads, and from R0-R3 to R4-R7, R8-R11 and R12-R15 for 
four threads respectively. Of course, this approach introduces 
overhead due to register spills, appeared in section IV.2. 
However, the spill problem can be alleviated by a rich set of 
register files. In the extended approach, all general registers are 
duplicated. Some special registers, such as a program counter 
and an instruction register, are shared. Other special registers, 
such as a status register and a stack pointer, were added and 
made privately for each thread.  

In the decoding stage, a thread control module was also 
added to control parallel execution. It enables or disables 
execution units, manages the program counter register, and 
handles a branch control unit to detect and manage control-
flow conflicts. The interface between a core and a data cache 
needs to be modified to support simultaneous memory 
accesses from multiple threads. As a basic implementation, we 
added a memory controller unit between the core and the data 
cache to perform the task of sequentially scheduling the 
multiple memory accesses and sequentially transferring data to 
the data cache. This makes the memory accessing time longer 
in parallel execution, which is an obstacle to achieving faster 
speed for memory instructions of our architecture. The simplest 
solution is to use a multiple-port data cache; however, in 
section III.4 we will further optimize this issue by widening the 
interface between the core and the data cache to exploit spatial 
locality between threads.  

3. Hardware and Compilation Interaction 

A. Identical Control-Flow Execution in Parallel Loops  

Depending on a thread identification number (ID), each 
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parallel thread knows which data it is responsible for. This ID is 
provided through the thread_id function of our library. The 
thread ID is stored in a special register inside execution units. 
At the starting point of parallel sections, thread 0 functions as 
the main thread to initialize the parallel execution environment 
using the fork function. This function performs the task of 
copying a thread function’s parameters into the threads’ private 
stack space and invokes a processor to start to run in parallel by 
waking child threads that are dedicated to the added execution 
units. The parallel execution of our new architecture operates 
as follows. The fetch and decode units still fetch and decode 
only one instruction at a time as in serial execution. All 
execution units receive instructions from the decode unit and 
process them using their own data. The problem of multiple 
threads accessing the memory at the same time in memory 
stages is resolved by a new data cache memory controller unit. 
After obtaining the results from memory stages, multiple 
threads update their own register files at write-back stages in 
parallel. The task of joining threads is also implemented in the 
fork function. All child threads are stalled and only thread 0 
continues running serially after join execution. This ideal 
parallel execution is applied to loops which have no if/switch 
clause and have an even number of iterations. If a loop has an 
odd number of iterations, we consider the last iteration an    
if-clause. Its implementation is described in the next sub-section. 

B. Different Control-Flow Execution in Parallel Loops 

Because of having different data, parallel threads can meet 
different conditions of branch instructions, such as “if” or 
“switch-case”, and no longer execute the same instruction 
sequence. Because our architecture uses only one instruction 
fetch unit and one decode unit for all threads, we need to 
resolve the conflict. The best solution is to divide threads into 
two groups: the taken branch and the branch not taken. Then, 
we let each group execute its code sequentially one-by-one 
until both groups start to execute the same code sequence again. 
Figure 5 shows an example of this control-flow conflict. This 
problem never occurs in conventional multithreaded 
architectures where parallel threads execute independently, 
possibly on different processors. When a control-flow conflict 
occurs, we need to solve the following three problems: first, 
how to detect when a control-flow conflict occurs; second, how 
to schedule the execution of threads when there is a time 
conflict; and third, how to determine when the conflict ends, so 
that we can execute threads in parallel again. 

Solving the first problem is quite simple. A control-flow 
conflict happens only at conditional branches, and their 
decision depends on the result of the previous comparison 
instruction. By comparing the status registers of all threads, we 
can easily detect whether a control-flow conflict occurs. The 

third problem is more difficult and very complex to solve by 
hardware alone. The participation of software makes the 
problem much easier. Our solution uses a special instruction, 
called a barrier function to mark the end of code sections 
susceptible to conflict, and a compiler is responsible for 
producing the correct codes using the barrier function. After 
determining the start and end of conflict codes, the hardware 
can solve the second problem by sequentially running each 
thread group’s code sequences until it meets a barrier 
instruction. We inserted a barrier at the end of each loop 
iteration to synchronize diverged control-flows as quickly as 
possible. Of course, threads work correctly even if we insert a 
barrier outside the loop. However, they can experience severe 
load imbalance if control-flows diverged in the loop iteration. 

The scenario becomes more complex when barriers are 
nested. Figure 7 shows examples of nesting barriers with four 
threads, where solid-lines represent the execution paths of 
active threads and dashed-lines represent jumps (and context 
switching) forced by barriers. We classify control-flow 
executions into five types, namely, switch, re-switch, merge, 
resume, and ignore. We maintain two types of records, namely, 
bar_record and div_record. Bar_record stores an execution of a 
barrier instruction to be inserted by a compiler. This record 
consists of a level, a call depth, the next PC, and the masks of 
threads to reach the barrier. The level implies the depth of 
nesting control-flow in codes. Div_record keeps control-flow 
divergence records and uses a stack structure. Whenever 
threads diverge, one group of threads continues to execute by 
some scheduling priorities. The others are deactivated and their 
information is pushed into the stack to be scheduled later. 
Div_record consists of a call depth, next PC, and the masks of 
the deactivated threads.  

In Fig. 7(a), assume that a control-flow diverges at a branch 
IF0 at t0, and threads 0 and 1 continue to execute in the 
direction of the branch taken. Div_record records 0 as the call 
depth, L0 as the execution starting point for the other 
deactivated threads (threads 2 and 3), and 0011 as the thread 
mask. When active threads (threads 0 and 1) execute a barrier 
BAR0, the barrier information is recorded in bar_record. Then 
threads are switched to inactive threads by popping the top of 
the div_record stack, and the stack becomes empty. Then, 
assume that a branch IF1 is executed and thread 2 continues to 
execute at t2. When the thread (thread 2) executes BAR1, the 
level of BAR1 (1 in this case) is compared with a barrier record 
in bar_record. If the level of BAR1 is larger than the barrier 
record (it implies that BAR1 is enclosed by another barrier in 
bar_record), BAR1 is ignored. If we allow a context switching 
for an inner barrier, a dead-lock may occur. In this case, we 
conservatively resolve the nesting barriers. If we can record 
multiple barriers, we may resolve the issue more aggressively.  
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Fig. 7. Examples of control-flow divergence handling. 
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After ignoring BAR1, thread 2 meets BAR0, which is the 
same barrier as that in the barrier record, so we take a re-switch 
action. This action is quite similar to switching except that   
re-switching just updates the thread mask of the barrier record 
by an OR operation with the mask of current active threads. 
Therefore, threads 0, 1, and 2 are recorded in the mask, and 
thread 3 becomes active. Then, thread 3 meets BAR0 again 
after ignoring BAR1. All control-flows are merged, and we 
activate all threads. 

Consider Fig. 7(b), where the first branch direction falls 
inside of the if-clause (IF0), and threads 0 and 1 are active. At 
IF1, thread 0 continues to execute and finally reaches BAR1. 
After two consequent control-flow divergences, we take switch 
and reswitch actions for BAR1. Then, threads 2 and 3 meet 
BAR0 whose level is lower than the barrier record in 
bar_record. This indicates that there are un-executed paths 
caused by the previous re-switch action; therefore, we resume 
threads deactivated by the previous context switching. Figure 
7(c) shows how our algorithm works with function calls. 
Although two barriers have the same level, they are 
distinguishable by the call depth of their functions.  

The performance, as well as the behavior, of the algorithm 
depends on which barrier (which control-flow) we execute first. 
If we schedule threads as shown in Fig. 7(b) (where the first 
branch direction falls inside an if-clause), we may omit the 
ignore action and execute multiple threads after BAR1 as in 
Fig. 7(a). Although we can resolve this imbalance by 
maintaining barrier records in a stack structure, the proposed 
algorithm is acceptable. The reason is that the outermost barrier 
is usually a pair of for-loops with an increasing induction 
variable. With such for-loops, taken branch directions always 
fall inside the for-loops because a main thread carries out the 

last iteration. 
This control-flow conflict occurs in both programmers’ 

codes and library functions. To ensure the correctness of 
parallel execution, we also developed a thread-safe library for 
our architecture. 

4. Widening the Data Cache Interface 

A single-port data cache will cause pipeline stalls in every 
parallel memory access in our architecture. However, threads 
may access data in the same cacheline in many cases because a 
cyclic scheduling scheme introduces high spatial locality. To 
exploit this opportunity, we widened the cache interface bus 
from 32 bits to 64 bits for 2-way or 128 bits for 4-way 
extension so that multiple threads can read and write data in 
only one memory access if their accessing addresses are in the 
same cacheline. 

Figure 8 shows the organization of our data cache and 
memory controller for 2-way extension. In parallel execution, 
the controller determines how to access the cache by 
comparing accessed addresses (ADR0, ADR1) from each 
thread. If these are in the same cacheline, the memory  

 

Fig. 8. Widening data cache interface for 2-way extension. 
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Fig. 9. Dynamic instruction overhead with respect to original codes.

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

D
yn

am
ic

 in
st

ru
ct

io
n 

ov
er

he
ad

 

16 registers 8 registers 4 registers

ai
fft

r

ai
iff

t 

ba
se

fp

id
ct

rn

m
at

ri x

au
tc

or fft

vi
te

rb

rg
bh

pg

be
zi

er
fix

ed

be
zi

er
flo

a t

av
er

ag
e

  
 
controller multiplexes the incoming 64 bits from the cache to 
load the whole thread’s data (LD0, LD1), or combines their 
stored data (ST0, ST1) and stores them as single double-sized 
data in one memory access. Otherwise, two memory accesses 
are handled sequentially in an interleaved manner, and a buffer 
is deployed for this purpose. In serial execution, the controller 
just routes all cache signals to an active thread. 

IV. Performance Analysis 

1. Experimental Setup 

In this section, we evaluate our parallel architecture’s 
performance and compare it to that of the original single 
architecture and the Intel Duo processor which supports 
SSE2/SSE3 execution in running EEMBC benchmarks [7]. 
For performance comparison with SIMD execution, we used 
the Intel 9.1.042 compiler to simdize the benchmarks and to 
identify parallel loops. The identified parallel loops are 
annotated by the OpenMP directives by hand, and are 
compiled by our compiler infrastructure, that is, the Omni and 
EISC backend compiler. We parallelized 11 out of 34 
benchmarks identified in [8]. We implemented our architecture 
by extending the commercial EISC AE32000C of ADChips 
Inc. [9] with the following system parameters: in-order 
execution, 24 MHz clock speed, I-cache of 8 KB, 4-way 1 
cycle hit, 128-bit cache line, D-cache of 8 KB, 4-way 1 cycle 
read, 2 cycle write, 128-bit cache line, 24 cycles for data, and 
42 cycles for instruction memory latency. All experiments were 
run on an evaluation board using a Virtex 4 XC4VLX100 
FPGA of Xilinx. 

We compared our performance only with Intel SSE 
execution since we wanted to use only one parallelizing 
compiler to generate parallel codes for different architectural 
variants (SIMD, CMP/SMT, and VLIW) for fairness of 
performance comparison. The Intel compiler was the only 

Fig. 10. Cycle distribution of 4-way MLEP with 16 registers 
when using hand-parallelized codes. 
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good available candidate since it automatically parallelizes 
codes for TLP and simdizes them for SIMD execution. Using 
different compilers for performance comparison would make it 
difficult to see the architectural advantages due to their different 
abilities. 

Each benchmark is measured in several aspects. The “icc-
simd” category means that the codes are automatically 
simdized by the Intel compiler and executed on the Intel 
processor. The icc-thread category implies that parallel loops 
are automatically identified by the Intel compiler but, executed 
on our platform. Our platform supports x-way extension, and 
each thread uses y registers. Similarly, “hand-thread” is the 
same as “icc-thread” except that the codes are parallelized by 
hand from [8]. 

2. Instruction Overhead 

There are two kind of instruction overhead in our 
architecture: parallelization overhead and register spill 
overhead. The parallelization overhead consists of parallel code 
overhead and thread management overhead. The parallel code 
overhead results from code transformation of serial codes into 
parallel versions (conversion of the OpenMP-directed parallel 
loops into subroutine-based forms). The thread management 
overhead is caused by the execution of thread library functions. 
The parallelization overhead is not avoidable in TLP 
programming, but the register spill overhead is caused by the 
lack of available registers in parallel execution due to the 
minimal extension in the hardware portion of our architecture.  

Figure 9 shows the dynamic instruction overhead of hand 
parallelized codes with respect to serial codes. The instruction 
overhead of parallelized benchmarks compared to serial ones is 
around -1.0% for 16 registers, 21.7% for 8 registers, and 32.0% 
for 4 registers per thread on average. The overhead for 16 
registers implies a parallelization overhead, which is very 
insignificant in most cases except for basefp, viterb, and rgbhpg. 



ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al.   583 

In this case, some benchmarks have negative instruction 
overhead for 16 registers, since the translated codes from the 
Omni compiler may allow the gcc compiler to generate better 
quality of codes. 

3. Speedup 

Table 1 shows the speedup of Intel SIMD and our proposed 
architecture, MLEP, with respect to serial execution. In the 
execution of parallel codes automatically identified by the Intel 
compiler, MLEP with 4 and 8 registers achieved weaker 
performance than the Intel SIMD execution due to register spill 
overhead. But with 16 registers, our approach outperformed 
Intel SSE2/SSE3 4-way SIMD execution by 4.6% on 2-way 
 

MLEP and 22.9% on 4-way MLEP. This better speedup results 
from higher parallelism as shown in Fig. 1. Only in the matrix 
benchmark, SIMD execution performs better than MLEP. In 
hand-parallelized codes, MLEP achieved much higher 
performance than auto-parallelization. In hand-parallelization, 
the OpenMP directives are annotated in code by hand are used 
as input for the compiler infrastructure. The benefit of 
widening a data cache interface is 9.4% speedup in auto-
parallelization and 11.6% speedup in hand-parallelization when 
using 4-way MLEP with 16 registers. 

Because the Intel processor executes multiple instructions 
per cycle in simdizable code regions, it is difficult to directly 
compare the performance of MLEP and SIMD execution. 
Because DLP can be exploited as ILP, the speedup resulting  
 

Table 1. Speedup comparison of our architecture (icc-thread and hand-thread) and SIMD on Duo SSE2/SSE3 (icc-simd) in auto- and hand-
parallelized codes. 

Auto-parallelization by the Intel compiler Hand-parallelization from [8] 

icc-thread (2-way) icc-thread (4-way) Hand-thread (2-way) Hand-thread (4-way)Benchmarks Cache icc-simd
(4-way) 8 regs 16 regs 4 regs 16 regs 8 regs 16 regs 4 regs 16 regs

1 port 1.11 1.11 1.15 1.16 1.04 1.19 0.97 1.17 
aifftr 

Widening 
0.93 

1.12 1.12 1.17 1.17 1.12 1.30 1.08 1.33 

1 port 1.12 1.12 1.14 1.15 0.98 1.26 0.87 1.12 
aiifft 

Widening 
0.98 

1.12 1.12 1.16 1.16 1.04 1.35 0.95 1.27 

1 port 1.16 1.15 0.79 1.19 1.16 1.16 0.79 1.21 
basefp 

Widening 
1.05 

1.16 1.15 0.79 1.19 1.16 1.16 0.79 1.21 

1 port 0.95 1.00 0.83 1.11 1.49 1.55 1.03 1.82 
idctrn 

Widening 
1.00 

0.98 1.05 0.89 1.23 1.56 1.63 1.09 1.99 

1 port 1.00 1.00 1.00 1.00 1.12 1.14 0.92 1.18 
matrix 

Widening 
1.15 

1.00 1.00 1.00 1.00 1.12 1.14 0.92 1.18 

1 port 1.27 1.75 1.12 2.78 1.27 1.75 1.12 2.78 
autcor 

Widening 
1.82 

1.39 1.98 1.26 3.86 1.39 1.98 1.26 3.86 

1 port 1.07 1.05 1.00 1.06 0.99 1.40 0.68 1.42 
fft 

Widening 
1.00 

1.09 1.07 1.03 1.10 1.09 1.62 0.74 1.74 

1 port 1.00 1.00 1.00 1.00 0.96 1.22 0.87 1.35 
viterb 

Widening 
1.00 

1.00 1.00 1.00 1.00 0.96 1.22 0.87 1.35 

1 port 1.00 1.00 1.00 1.00 1.29 1.43 1.18 1.97 
rgbhpg 

Widening 
1.00 

1.00 1.00 1.00 1.00 1.29 1.43 1.18 1.97 

1 port 1.00 1.00 1.00 1.00 1.56 1.56 2.15 2.15 
bezierfix 

Widening 
1.00 

1.00 1.00 1.00 1.00 1.57 1.57 2.19 2.18 

1 port 1.00 1.00 1.00 1.00 1.42 1.42 1.16 1.83 
bezierfloat 

Widening 
1.00 

1.00 1.00 1.00 1.00 1.42 1.42 1.16 1.83 

1 port 1.06 1.11 1.00 1.22 1.21 1.37 1.07 1.64 
Average 

Widening 
1.09 

1.08 1.14 1.03 1.34 1.25 1.44 1.12 1.83 
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from simdization on a multiple-issue processor is usually less 
than the speedup resulting from simdization on a single-issue 
processor. However, IPC on the Intel processor was 1.62 with 
simdization and 1.77 without. This indicates that IPC is very 
similar in non-simdizable and simdizable regions, and the 
speedup of SIMD can be compared with 2.5-way (4-way/IPC) 
of our approach. The performance gap between the ideal (Fig. 
2) and the real measurement results from several factors: the 
parallelization overhead, the register spills shown in Fig. 9, the 
data cache misses (92.8% hit in 2-way and 90.2% in 4-way), 
and the control-flow conflict (basefp: 24.7%, matrix: 11.0%, 
viterb: 11.4%, and 8.5% in bezierfloat of the parallel execution 
time in 4-way with 16 registers) as shown in Fig. 10. 

Our architecture is scalable in terms of performance metrics. 
Applying Amdahl’s Law to the icc-thread 2-way 16-register 
speedup, we calculate that the parallel region is about 26.9% of 
the total code. By applying this ratio to Amdahl’s Law with  
4-way extension, we get the upperbound speedup of 1.25. The 
higher measured speedup of 1.34 comes from the higher 
number of data cache hits on the 4-way MLEP. Similarly, the 
achieved speedup in hand-parallelized codes is 1.83, and the 
calculated upperbound speedup based on Amdahl’s Law is 
1.85 (61.1% parallel regions on average) on the 4-way with  
16 registers. 

Figure 10 shows the cycle distribution on the 4-way MLEP 
with 16 registers using hand-parallelized codes. In the figure, 
“serial” means a serial execution, “parallel” means that all 
threads execute the same control-flow, “last iteration” means 
that control-flows diverge at the last iterations of parallel loops 
where there are not enough iterations to be fetched for all 
threads, and “if-conflict” indicates real control-flow conflicts in 
parallel regions. Only a few benchmarks include real control-
flow conflicts, and this strongly supports our motivation. The 
control-flow conflicts occur in floating-point libraries in basefp 
and bezierfloat, which EISC AE32000C emulates. 

4. Complexity and Power Consumption 

In addition to good performance, our architecture is also 
attractive in terms of hardware complexity (logic gates) and 
power consumption. The hardware complexity is measured 
using Synopsys’ Design Compiler and the power consumption 
is evaluated using the PrimePower tool. We used a statistical 
activity based on a power analysis with a 0.18 µm CMOS 
process at 1.62 V supply voltage and at 100 MHz clock 
frequency. The toggle rate of primary inputs was 50%. 

In total, there is a hardware complexity increase of 62.2% 
(61,185 to 99,215 gates) in the 2-way and 182.9% (to 173,084 
gates) in the 4-way MLEP. Power consumption increases by 
41.9% (14.624 to 20.749 mW) in the 2-way and by 124.9% (to 

32,884 mW) in the 4-way MLEP. Our proposed architecture 
shows much lower power consumption and complexity than 
typical dual-core and quad-core architectures [6]. Also, the 
widened cache interface incurs a complexity overhead of 
73.6%; however, this complexity is minimal compared to the 
total. The difference with and without register duplication is 
negligible. The resource of the fetch unit in serial and parallel 
architecture is similar. The hardware complexity of the fetch 
and decode units was increased by 61.9% in 2-way and 
142.9% in the 4-way MLEP. This is due to the following 
factors: division of the original register file into banks or 
duplication of the original register file; renaming registers; the 
addition of special registers (a stack pointer and a status 
register); the addition of update units, buses and buffer 
resources; and the addition of a thread controller unit. When 
more execution units are added, resource utilization increases 
by 80.6% in the 2-way and 254.9% in the 4-way extensions. 
The increase in the number of memory and write back units 
was 62.7% and 226.6% in the 2-way and 4-way MLEP, 
respectively, (AE32000C combines these two units into one) 
due to the duplicated buses and signals as well as additional 
selection units. 

V. Related Work 

Our architecture is similar to SMT [16] and SIMD execution. 
The SMT architecture allows multiple threads to compete for 
and to share all of the processor’s resources every cycle; 
therefore, it converts TLP into ILP [16]. Each thread executes its 
own instruction streams. The clustered architecture 
fetches/decodes multiple instructions in one cycle and distributes 
them in separate instruction queues to clustered functional units 
[17]. In [18], multiple processors execute independent instruction 
streams, but in a lockstep manner between cores with an 
appropriate synchronization through communication. Our 
architecture uses only one instruction stream which is shared by 
all cores, and our study demonstrates that the sharing is an 
acceptable solution in embedded benchmarks. 

In SIMD architectures some dedicated instructions are 
developed to exploit DLP; however, not all instructions in ISA 
can be used for SIMD execution because some of them do not 
provide DLP, such as branch, stack push/pop, call instructions, 
and so on. The limitation incurs a compiler frequently fail to 
simdize the codes [10]. Also, in order to invoke SIMD 
execution, data must be moved to SIMD register files, which 
sometimes incur large overhead. MLEP allows instructions to 
be executed at the same time by multiple threads like the 
SIMD execution, but no special data movement is required for 
parallel execution except for argument passing terminology 
from a main thread to its child threads. In conventional SIMD 
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architectures like MasPar [19], no barrier instruction is needed 
since it does not support control transfer instructions. Our 
approach is similar to the divergence control and dynamic wrap 
formation of modern graphics processing units (GPUs) [20]. The 
GPU approach relies on dynamic instruction wrapping to hide 
memory latency and to better fill the hardware cores. A stack 
structure is also used to control the divergence and convergence 
of threads in our architecture. However, with only a hardware 
mechanism to keep PCs and their associated information inside 
the stack as in [20], convergence control is not guaranteed due to 
the compiler’s jump optimization. To resolve this problem, we 
use an explicit synchronization inside codes by introducing a 
barrier instruction. Another difference is that we slightly modify 
the cache interface by widening the cache, which improves 
spatial locality between threads. The nVidia G80 GPU uses an 
execution model which is very similar to ours, and uses Parallel 
Thread Execution (PTX) which is a low-level parallel thread 
execution virtual machine and ISA for general purpose parallel 
thread execution. PTX programs are translated at install time to 
the target hardware instruction set [21]. Also, the G80 GPU uses 
predicate branches to resolve the divergence control problem [22]. 

VI. Conclusion and Future Work 

In this paper, we introduced a new architecture to execute 
parallel threads in lockstep by partially duplicating a single 
pipeline and support from a compiler. The proposed approach 
uses thread-level parallelism as in an SMT/CMP system, but 
executes parallel threads in lockstep like a SIMD machine by 
translating TLP into statically scheduled ILP by a compiler.  

Our approach is more favorable than a typical SIMD 
execution because of its wider range of applicability, much 
easier and more robust code generation using TLP, the use of 
the same and all original instruction sets for SIMD execution, 
no initialization of SIMD registers, and higher parallelism due 
to parallelization of the outermost loops. More importantly, a 
programmer can easily annotate parallel loops, which allows a 
compiler to generate high quality parallel codes. Also, our 
hardware is much simpler than other architecture variants such 
as SMT, CMP and in-order superscalar processors due to the 
support of the compiler. This results in much lower power 
consumption and resource utilization. The verification and 
performance evaluation of our proposal was performed by 
extending a commercial 32-bit embedded core and 
synthesizing it on Xilinx FPGA.  

A major drawback of our approach is that it requires multiple 
computing resources in duplicated pipeline stages for multiple 
threads. To solve this problem, we will design an instruction 
scheduler to use hardware software pipelining (shifting 
instruction sequences like software pipelining).  
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