
576 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

In most parallel loops of embedded applications, every
iteration executes the exact same sequence of instructions
while manipulating different data. This fact motivates a new
compiler-hardware orchestrated execution framework in
which all parallel threads share one fetch unit and one
decode unit but have their own execution, memory, and
write-back units. This resource sharing enables parallel
threads to execute in lockstep with minimal hardware
extension and compiler support. Our proposed architecture,
called multithreaded lockstep execution processor (MLEP),
is a compromise between the single-instruction multiple-data
(SIMD) and symmetric multithreading/chip multiprocessor
(SMT/CMP) solutions. The proposed approach is more
favorable than a typical SIMD execution in terms of degree
of parallelism, range of applicability, and code generation,
and can save more power and chip area than the SMT/CMP
approach without significant performance degradation. For
the architecture verification, we extend a commercial 32-bit
embedded core AE32000C and synthesize it on Xilinx
FPGA. Compared to the original architecture, our approach
is 13.5% faster with a 2-way MLEP and 33.7% faster with a
4-way MLEP in EEMBC benchmarks which are
automatically parallelized by the Intel compiler.

Keywords: ILP, TLP, SMT, CMP, MLEP.

Manuscript received Dec. 12, 2007; revised June 19, 2008; accepted June 30, 2008.
This research was supported by grant No. R01-2005-000-10124-0 from the Basic Research

Program of the Korea Science and Engineering Foundation, and Nano IP/SoC Promotion
Group of R&BD Program in 2008.

Jaegeun Oh (phone: 82 2 3290 3892, email: worms97@korea.ac.kr), Seok Joong Hwang
(email: nzthing@korea.ac.kr), Huong Giang Nguyen (email: redriver@korea.ac.kr), Areum
Kim (email: naareumi@korea.ac.kr), Seon Wook Kim (phone: + 82 2 3290 3251, email:
seon@korea.ac.kr), Chulwoo Kim (email: ckim@korea.ac.kr), and Jong-Kook Kim (email:
jongkook@korea.ac.kr) are with the School of Electrical Engineering, Korea University, Seoul,
Rep. of Korea

I. Introduction

Intrinsically embedded applications have a high degree of
parallelism on several levels, such as data, instruction, and thread
levels [1], [2]. However, it is difficult to exploit that parallelism
because real embedded platforms are composed of very simple
cores due to manufacturing cost, chip area, power consumption,
and thermal dissipation. Therefore, it is very costly and maybe
impractical to use the state-of-the-art high performance
processors like superscalars [3], simultaneous multithreading [4],
and so on, in embedded systems. One promising approach is to
use several simple processors on one chip such as chip
multiprocessors (CMPs). Recently, many industry vendors have
introduced CMPs targeted for embedded applications [5], [6].
The CMP consumes less energy than superscalar and symmetric
multithreading (SMT) architectures in applications to exploit
high thread-level parallelism, but still consumes much power and
resources. For example, the power consumption and resource
complexity in the two processors of the ARM11TM MPCore are
2.25 and 2.17 times higher than those of a single core.

Another attractive approach to achieve high performance in
embedded codes is to employ single-instruction multiple-data
(SIMD) execution. We experimentally applied the Intel
compiler 9.1.042 to automatically simdize several of the EDN
Embedded Microprocessor Benchmarking Consortium
(EEMBC) benchmarks [7] selected from [8]. Figure 1 shows
the percentage of the total execution time spent in simdized and
parallelized regions automatically identified by the compiler,
and it was very low. For measurement, we used the number of
executed cycles on our synthesized experimental processor,
AE32000C, on FPGA [9]. The compiler cannot exploit data
level parallelism (DLP) in many highly parallel loops due to

Exploiting Thread-Level Parallelism in Lockstep
Execution by Partially Duplicating a Single Pipeline

 Jaegeun Oh, Seok Joong Hwang, Huong Giang Nguyen, Areum Kim,
Seon Wook Kim, Chulwoo Kim, and Jong-Kook Kim

ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al. 577

Fig. 1. Percentage of the total execution time spent in simdized
and parallelized loops automatically identified by the Intel
compiler.

0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

icc-simd icc-thread
ai

fft
r

ai
iff

t

ba
se

fp

id
ct

rn

m
at

rix

au
tc

or fft

vi
te

rb

rg
bh

pg

be
zi

er
fix

ed

be
zi

er
flo

at

their enclosing pointers, mixed data types, function calls,
branches, dependences, and so on, especially in rgbhpg,
bezierfixed, and bezierfloat [10]. It is well known that it is not
possible to simply simdize codes without aggressively
restructuring and rewriting applications [11], [12]. The Intel
compiler also fails to identify parallel loops due to unknown
loop trip counts, unidentifiable private variables, and so on. In
our test result, however, it exploits higher parallelism in loop
parallelization (icc-thread in Fig. 1) than in simdization (icc-
simd). The compiler can automatically identify loop-level
parallelism (LLP) in almost all simdizable and non-simdizable
loops. The DLP is normally expressed in forms of loops in
embedded codes. It is easier for the compiler and programmer
to detect LLP than DLP. By eliminating the limited
applicability of SIMD instruction set architecture (ISA) and
parallelizing the outermost loops rather than the innermost ones,
thread-based parallel execution from LLP can express more
parallelism than SIMD/vector execution in general.

In this paper, we propose a new processor architecture, called
multithreaded lockstep execution processor (MLEP), which
overcomes the resource cost of CMPs and the limited
applicability of simdization of SIMD machines. Our
architecture exploits thread-level parallelism (TLP) as in
SMT/CMP from LLP, but it executes parallel threads in
lockstep as in SIMD by translating TLP into statically
scheduled instruction level parallelism (ILP) by a compiler. On
CMPs and SMTs, each thread executes its own code sections
independently with appropriate synchronizations. In most
parallel loops of embedded applications, however, every
iteration executes the exact same sequence of instructions
while processing different data. If a group of threads executes
the identical code sequence, transferring the code to processors
and then fetching and decoding them separately is not an
optimal method. Instruction fetch and decode units can be
shared among threads. Each thread only needs private
execution, memory, and write-back units. Sharing allows
parallel threads to execute in lockstep, as in SIMD execution.

Fig. 2. Upperbound of speedup on our architecture with 2 and 4
threads in hand-parallelized codes.

0
0.5
1.0

1.5
2.0
2.5
3.0

3.5
4.0

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

2-
w

ay

4-
w

ay

aifftr aiifft basefp idctrn matrix autcor fft viterb rgbhpgbezier
fixed

bezier
float

Id
ea

l s
pe

ed
up

Same Different

Our approach has advantages over SIMD execution in terms of
applicable range and code generation because it can use normal
instruction sets without restriction. Also, by using one
instruction fetch unit and one instruction decode unit for
parallel executions, our approach use less power and chip area
than a chip multiprocessor without significant loss of
performance in embedded applications.

Our proposal is based on the following observations. Most
embedded applications can be highly parallelized to exploit
TLP. Parallel loops consume the most execution time, and all
threads execute the exact same code sequence in most cases.
We marked the starting and ending points of parallel loops
identified in EEMBC benchmarks [8], and measured the
number of total execution cycles to calculate the potential
speedup [9] on our experimental processor. Figure 2 shows an
upperbound speedup in two categories by applying Amdahl’s
Law with 2 and 4 threads. The category “same” indicates the
ideal speedup achieved by parallel codes which do not include
any if-else/switch clause; therefore, it is guaranteed that all
threads execute the same code sequence. That is, code
sequences are syntactically identical. The category “different”
indicates speedup when it is assumed that two threads execute
the same code sequence even if there are if-else/switch clauses
inside parallel loops. The achieved speedup is very high. All
benchmarks have an ideal speedup of 1.76 in the 2-way MLEP
and 3.01 in the 4-way MLEP on average, and five of them
achieve ideal speedup.
Figure 3 shows the distribution of dynamic instructions in

parallel and serial regions. The ratio of branch instructions in
parallel regions is less than 1%, which implies that the
possibility of control-flow conflict between threads is very low.
In other words, there are very few conditional clauses, such as
if-else/switch clauses. They are in only in four of the
benchmarks in Fig. 2. This implies that parallel threads execute
the same code sequence most of the time. Memory instructions
in parallel regions are about 20% of the total instructions on

578 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

Fig. 3. Distribution of dynamic instructions in parallel (P_*) and
serial (S_*) code sections in Fig. 2.

0

20

40

60

80

100

R
at

io
 (%

)

P_branch P_memory P_etc
S_branch S_memory S_etc

ai
fft

r

ai
iff

t

ba
se

fp

id
ct

rn

m
at

ri x

au
to

co
r fft

vi
te

rb

rg
bh

pg

be
zi

er
fix

ed

be
zi

er
flo

a t

average. Therefore, a data cache is needed which can process
multiple memory instructions from threads simultaneously to
achieve good performance.

Our experiment shows that in comparison with the original
architecture, our proposed architecture achieved speeds 1.14 and
1.34 times faster on average and up to 1.98 and 3.86 times faster
in automatically parallelized EEMBC embedded benchmarks
with increases of 62.2% and 182.9% in complexity and 41.9%
and 124.9% in power consumption with 2-way MLEP and
4-way MLEP, respectively. Speed improvements of 1.44 and
1.83 were also achieved in hand-parallelized codes on 2-way
MLEP and 4-way MLEP, respectively.
The remainder of this paper is organized as follows. In section

II, we introduce the overall organization of our architecture,
and in the next section, we present its implementation. Section
IV analyzes its performance. Related works are discussed in
section V, and the last section summarizes our research.

II. Architecture Overview

We explain the execution behavior of our architecture, MLEP,
with examples of 2-thread execution. If two threads execute the
same instruction sequence as shown in Fig. 4, one instruction
fetch unit and one decode unit are sufficient for multithreading
execution (see section III.3.A for details). When two threads
execute different control-flows, only one thread becomes active
at a time, and in a predefined scheduling order, as shown in
Fig. 5. When the divergence ends, two threads are synchronized
for their following simultaneous execution. We need a
mechanism that threads know where they are synchronized. We
introduced a barrier instruction, inserted by our compiler, to mark
a synchronization point, where threads are guaranteed to join.
This approach does not incur large overhead, since the number
of executed branch instructions is very small as shown in Fig 3.
This case also covers the odd number of loop iterations (see

Fig. 4. Execution of the same control-flow in a parallel loop. The
shaded boxes represent the executed code sections in the
loop body.

Original code

Thread #0 Thread #1
…
{

} …

…
{

}…
a[0]=1;

…
{

}…

…
{

} …

…
{

}…

…
{

} …

a[1]=1;

a[2]=1; a[3]=1;

a[4]=1; a[5]=1; i==4 i==5

i==2 i==3

i==0 i==1

for (i=0; i<10; i++){
a[i]=1;

}

P
ar

al
le

l e
xe

cu
tio

n

Fig. 5. Execution of a different control-flow in a parallel loop.
The shaded boxes represent the executed code sections in
the loop body.

Serial code

else a[0]=0;
barrier();

Thread #1Thread #0

Synchronization

for (i=0; i<10; i++){
if (i==2) a[i]=1;

else a[i]=0;
}

Thread
switch

If(i==2)
a[i]=1;

…

else a[1]=0;
barrier();

If(i==2)
a[i]=1;

…

i==1i==0

P
ar

al
le

l
ex

ec
ut

io
n

If(i==2)
a[2]=1;

else a[i]=0;
barrier();

else a[3]=0;
barrier();

i==3i==2

i==5i==4
If(i==2)

a[i]=1;
If(i==2)

a[i]=1;
else a[4]=0;
barrier();

else a[5]=0;
barrier();

… …

… …

S
er

ia
l

ex

ec
ut

io
n

P
ar

al
le

l
ex

ec
ut

io
n

If(i==2)
a[i]=1;

… …

… …

… …

section III.3.B for details) In general, there is high spatial data
locality of memory references in two sequences of loop
iterations. Therefore, in order to use one shared data cache and
to exploit high spatial locality, we use cyclic scheduling. In Fig.
4, a constant 1 is stored in both a[i] and a[i+1] at the same time;
therefore, we may store two words at one time with address
a[i] instead of accessing the data cache twice. We can take this
opportunity to achieve better speedup only with small
modification of an interface between a data cache and a core,
and its details are described in section III.4.

In order to verify the above working principle, we

ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al. 579

Fig. 6. Hardware architecture overview for 2-way MLEP. The
cross-lined boxes and dashed lines were added for our
purpose.

IMEM

ADDR
Generation

Decoder
& control

Thread
control

IF EX MEM

WB

EX #0

SP

SR

DMEM

SP

Special regs

SR
PC
LR
ER

ID/OF

SPBUS_T SPBUS
CBUS_T CBUS

SEL #0

SEL #1
EX #1

General regs

General regs R
en

am
e

Branch
&

IFU

Prefetch
queue

ABUS ABUS_T
 BBUS BBUS_T

R0~R7

R8~R15

implemented the idea by modifying the AE32000C core which
is a standard single 5-stage pipeline microprocessor
architecture [9]. The overview of our architecture for 2-way
extension is shown in Fig. 6, and our modification is marked as
cross-lined boxes and dashed lines. Our prototyped processor
supports 2 to 4 threads. However, since our solution can handle
control-flow conflicts for any number of threads, it is
completely scalable. Also, the achieved speed improvement is
scalable with the number of cores. As shown in Fig. 6, the fetch
unit was kept the same as that in the original architecture. The
decode unit was changed a little to support thread control
instructions. The memory and write-back units were modified
to support multiple memory accesses at the same time. There
are two approaches to developing register files. With one
approach original register files are duplicated, and with the
other, they are not. This register file duplication problem is
explained in detail in section III.2. Also, some special registers
and buses were added in our architecture.

III. Architecture Implementation

1. Code Generation

We used a typical code generation scheme for a shared-
memory system. OpenMP directives are used to identify
parallel loops [13], and the Omni compiler is used to translate
OpenMP codes into subroutine-based forms in order to provide
stack space to each thread to handle thread private variables
[14]. The Omni OpenMP runtime library was modified in
order to use our thread libraries instead of PThread. The
translated codes are compiled by the gcc-based EISC compiler
and linked with our libraries to build executable codes [15].

2. Core Extension for Multithreading

The minimum resources needed for one independent thread
execution are an execution unit, a private register file and a
separate stack-space. We provided each thread with a private
execution unit and a private stack space. However, with the
register file we provided two options: a basic approach and an
extended approach. In the basic approach, to minimize
resource usage and power consumption we do not duplicate
the original register file (16 general registers, R0-R15 in
AE32000C). The original general register file is divided into
several identical banks for parallel execution. In serial
execution, the processor uses all general registers, but in
parallel, each thread uses a half for two threads and a quarter of
all general registers for four threads. We rely on our compiler to
generate codes using only a half or a quarter of general
registers (R0-R7 or R0-R3) for parallel sections. A register
rename unit was added in front of the child threads to rename
instruction register operands from R0-R7 to R8-R15 for two
threads, and from R0-R3 to R4-R7, R8-R11 and R12-R15 for
four threads respectively. Of course, this approach introduces
overhead due to register spills, appeared in section IV.2.
However, the spill problem can be alleviated by a rich set of
register files. In the extended approach, all general registers are
duplicated. Some special registers, such as a program counter
and an instruction register, are shared. Other special registers,
such as a status register and a stack pointer, were added and
made privately for each thread.

In the decoding stage, a thread control module was also
added to control parallel execution. It enables or disables
execution units, manages the program counter register, and
handles a branch control unit to detect and manage control-
flow conflicts. The interface between a core and a data cache
needs to be modified to support simultaneous memory
accesses from multiple threads. As a basic implementation, we
added a memory controller unit between the core and the data
cache to perform the task of sequentially scheduling the
multiple memory accesses and sequentially transferring data to
the data cache. This makes the memory accessing time longer
in parallel execution, which is an obstacle to achieving faster
speed for memory instructions of our architecture. The simplest
solution is to use a multiple-port data cache; however, in
section III.4 we will further optimize this issue by widening the
interface between the core and the data cache to exploit spatial
locality between threads.

3. Hardware and Compilation Interaction

A. Identical Control-Flow Execution in Parallel Loops

Depending on a thread identification number (ID), each

580 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

parallel thread knows which data it is responsible for. This ID is
provided through the thread_id function of our library. The
thread ID is stored in a special register inside execution units.
At the starting point of parallel sections, thread 0 functions as
the main thread to initialize the parallel execution environment
using the fork function. This function performs the task of
copying a thread function’s parameters into the threads’ private
stack space and invokes a processor to start to run in parallel by
waking child threads that are dedicated to the added execution
units. The parallel execution of our new architecture operates
as follows. The fetch and decode units still fetch and decode
only one instruction at a time as in serial execution. All
execution units receive instructions from the decode unit and
process them using their own data. The problem of multiple
threads accessing the memory at the same time in memory
stages is resolved by a new data cache memory controller unit.
After obtaining the results from memory stages, multiple
threads update their own register files at write-back stages in
parallel. The task of joining threads is also implemented in the
fork function. All child threads are stalled and only thread 0
continues running serially after join execution. This ideal
parallel execution is applied to loops which have no if/switch
clause and have an even number of iterations. If a loop has an
odd number of iterations, we consider the last iteration an
if-clause. Its implementation is described in the next sub-section.

B. Different Control-Flow Execution in Parallel Loops

Because of having different data, parallel threads can meet
different conditions of branch instructions, such as “if” or
“switch-case”, and no longer execute the same instruction
sequence. Because our architecture uses only one instruction
fetch unit and one decode unit for all threads, we need to
resolve the conflict. The best solution is to divide threads into
two groups: the taken branch and the branch not taken. Then,
we let each group execute its code sequentially one-by-one
until both groups start to execute the same code sequence again.
Figure 5 shows an example of this control-flow conflict. This
problem never occurs in conventional multithreaded
architectures where parallel threads execute independently,
possibly on different processors. When a control-flow conflict
occurs, we need to solve the following three problems: first,
how to detect when a control-flow conflict occurs; second, how
to schedule the execution of threads when there is a time
conflict; and third, how to determine when the conflict ends, so
that we can execute threads in parallel again.

Solving the first problem is quite simple. A control-flow
conflict happens only at conditional branches, and their
decision depends on the result of the previous comparison
instruction. By comparing the status registers of all threads, we
can easily detect whether a control-flow conflict occurs. The

third problem is more difficult and very complex to solve by
hardware alone. The participation of software makes the
problem much easier. Our solution uses a special instruction,
called a barrier function to mark the end of code sections
susceptible to conflict, and a compiler is responsible for
producing the correct codes using the barrier function. After
determining the start and end of conflict codes, the hardware
can solve the second problem by sequentially running each
thread group’s code sequences until it meets a barrier
instruction. We inserted a barrier at the end of each loop
iteration to synchronize diverged control-flows as quickly as
possible. Of course, threads work correctly even if we insert a
barrier outside the loop. However, they can experience severe
load imbalance if control-flows diverged in the loop iteration.

The scenario becomes more complex when barriers are
nested. Figure 7 shows examples of nesting barriers with four
threads, where solid-lines represent the execution paths of
active threads and dashed-lines represent jumps (and context
switching) forced by barriers. We classify control-flow
executions into five types, namely, switch, re-switch, merge,
resume, and ignore. We maintain two types of records, namely,
bar_record and div_record. Bar_record stores an execution of a
barrier instruction to be inserted by a compiler. This record
consists of a level, a call depth, the next PC, and the masks of
threads to reach the barrier. The level implies the depth of
nesting control-flow in codes. Div_record keeps control-flow
divergence records and uses a stack structure. Whenever
threads diverge, one group of threads continues to execute by
some scheduling priorities. The others are deactivated and their
information is pushed into the stack to be scheduled later.
Div_record consists of a call depth, next PC, and the masks of
the deactivated threads.

In Fig. 7(a), assume that a control-flow diverges at a branch
IF0 at t0, and threads 0 and 1 continue to execute in the
direction of the branch taken. Div_record records 0 as the call
depth, L0 as the execution starting point for the other
deactivated threads (threads 2 and 3), and 0011 as the thread
mask. When active threads (threads 0 and 1) execute a barrier
BAR0, the barrier information is recorded in bar_record. Then
threads are switched to inactive threads by popping the top of
the div_record stack, and the stack becomes empty. Then,
assume that a branch IF1 is executed and thread 2 continues to
execute at t2. When the thread (thread 2) executes BAR1, the
level of BAR1 (1 in this case) is compared with a barrier record
in bar_record. If the level of BAR1 is larger than the barrier
record (it implies that BAR1 is enclosed by another barrier in
bar_record), BAR1 is ignored. If we allow a context switching
for an inner barrier, a dead-lock may occur. In this case, we
conservatively resolve the nesting barriers. If we can record
multiple barriers, we may resolve the issue more aggressively.

ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al. 581

Fig. 7. Examples of control-flow divergence handling.

} }

IF1(){.L1

;

D 0

1
0

D

D 0
B 10

D 0

B 00

D 0

0
0

D

D 0
B 01

B 01

B 00

D 0

B 0

.L1 D 0

.L3 B 0 0

D 0
B 0

B 0

B

2 3

Active
threads thread

0,1,2,3

000 1
110 0

00 0 1
110 0

1 1 1 0

0011

0100
0011

0011
1000

1100

0011

0011

0100
0011

0011
1000

0011

1100

D

CALL
0,1

0 1 0.1

.L1

.L3

.L3

.L3 1 1 1 0 0

0

0

0

0 .L3

001 1

110 0

.L0
t0: Diverge

t1: Switch

t0: Diverge

t3: Ignore

t4: Re-switch

t5: Ignore

BAR0
.L3 t6: Merge

BAR1
.L2

;

IF1() {.L1

IF0() {.L0

2,3

t5BAR0;
.L4

} .L3
t4

2,3
0,1

;.L2BAR1
t2 } t3

0 1

t1
0,1

IF1(){.L0t0 .L3
t0: Diverge

t1: Diverge

.L3

.L1

t2: Switch
.L3
.L2

t3: Re-switch
.L2

.L4
t4: Resume

t5: Merge

B =Bar_record
: level
/call depth/next pc
/reached threads mask

t5
2,3

BAR0;
.L4

}.L3

RET
0,1

BAR0
.L2

t2 t3

IF1(){.L1 t1

IF0(){.L0 t0
t0: Diverge

.L3

.L1

.L3

.L3

.L2

.L3

.L4

t1: Diverge

t2: Switch

t3: Merge

t4: Switch

t5: Merge

=Div_record
: call depth/next PC
/pending threads mask

(c) (b) (a)

t4

t0

t3 t1

t2

0,1,2,3

0,1,2,3 0,1,2,3

0,1,2,3 0,1,2,3

0,1,2,3

t4

After ignoring BAR1, thread 2 meets BAR0, which is the
same barrier as that in the barrier record, so we take a re-switch
action. This action is quite similar to switching except that
re-switching just updates the thread mask of the barrier record
by an OR operation with the mask of current active threads.
Therefore, threads 0, 1, and 2 are recorded in the mask, and
thread 3 becomes active. Then, thread 3 meets BAR0 again
after ignoring BAR1. All control-flows are merged, and we
activate all threads.

Consider Fig. 7(b), where the first branch direction falls
inside of the if-clause (IF0), and threads 0 and 1 are active. At
IF1, thread 0 continues to execute and finally reaches BAR1.
After two consequent control-flow divergences, we take switch
and reswitch actions for BAR1. Then, threads 2 and 3 meet
BAR0 whose level is lower than the barrier record in
bar_record. This indicates that there are un-executed paths
caused by the previous re-switch action; therefore, we resume
threads deactivated by the previous context switching. Figure
7(c) shows how our algorithm works with function calls.
Although two barriers have the same level, they are
distinguishable by the call depth of their functions.

The performance, as well as the behavior, of the algorithm
depends on which barrier (which control-flow) we execute first.
If we schedule threads as shown in Fig. 7(b) (where the first
branch direction falls inside an if-clause), we may omit the
ignore action and execute multiple threads after BAR1 as in
Fig. 7(a). Although we can resolve this imbalance by
maintaining barrier records in a stack structure, the proposed
algorithm is acceptable. The reason is that the outermost barrier
is usually a pair of for-loops with an increasing induction
variable. With such for-loops, taken branch directions always
fall inside the for-loops because a main thread carries out the

last iteration.
This control-flow conflict occurs in both programmers’

codes and library functions. To ensure the correctness of
parallel execution, we also developed a thread-safe library for
our architecture.

4. Widening the Data Cache Interface

A single-port data cache will cause pipeline stalls in every
parallel memory access in our architecture. However, threads
may access data in the same cacheline in many cases because a
cyclic scheduling scheme introduces high spatial locality. To
exploit this opportunity, we widened the cache interface bus
from 32 bits to 64 bits for 2-way or 128 bits for 4-way
extension so that multiple threads can read and write data in
only one memory access if their accessing addresses are in the
same cacheline.

Figure 8 shows the organization of our data cache and
memory controller for 2-way extension. In parallel execution,
the controller determines how to access the cache by
comparing accessed addresses (ADR0, ADR1) from each
thread. If these are in the same cacheline, the memory

Fig. 8. Widening data cache interface for 2-way extension.

128
MUX

MUX

MUX

MUX

64
D-cache SRAM Wide cache interface bus

128
DeMUX

64

64

Buffer

MUX

MUX
32

32

Combiner

Memory controller

Controller
Cache controller

M
U
X

Way 0
128×128 bit

Way 1
128×128 bit

Way 2
128×128 bit

Way 3
128×128 bit

LD0

LD1

ST0

ST1

ADR0
ADR1

582 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

Fig. 9. Dynamic instruction overhead with respect to original codes.

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

D
yn

am
ic

 in
st

ru
ct

io
n

ov
er

he
ad

16 registers 8 registers 4 registers

ai
fft

r

ai
iff

t

ba
se

fp

id
ct

rn

m
at

ri x

au
tc

or fft

vi
te

rb

rg
bh

pg

be
zi

er
fix

ed

be
zi

er
flo

a t

av
er

ag
e

controller multiplexes the incoming 64 bits from the cache to
load the whole thread’s data (LD0, LD1), or combines their
stored data (ST0, ST1) and stores them as single double-sized
data in one memory access. Otherwise, two memory accesses
are handled sequentially in an interleaved manner, and a buffer
is deployed for this purpose. In serial execution, the controller
just routes all cache signals to an active thread.

IV. Performance Analysis

1. Experimental Setup

In this section, we evaluate our parallel architecture’s
performance and compare it to that of the original single
architecture and the Intel Duo processor which supports
SSE2/SSE3 execution in running EEMBC benchmarks [7].
For performance comparison with SIMD execution, we used
the Intel 9.1.042 compiler to simdize the benchmarks and to
identify parallel loops. The identified parallel loops are
annotated by the OpenMP directives by hand, and are
compiled by our compiler infrastructure, that is, the Omni and
EISC backend compiler. We parallelized 11 out of 34
benchmarks identified in [8]. We implemented our architecture
by extending the commercial EISC AE32000C of ADChips
Inc. [9] with the following system parameters: in-order
execution, 24 MHz clock speed, I-cache of 8 KB, 4-way 1
cycle hit, 128-bit cache line, D-cache of 8 KB, 4-way 1 cycle
read, 2 cycle write, 128-bit cache line, 24 cycles for data, and
42 cycles for instruction memory latency. All experiments were
run on an evaluation board using a Virtex 4 XC4VLX100
FPGA of Xilinx.

We compared our performance only with Intel SSE
execution since we wanted to use only one parallelizing
compiler to generate parallel codes for different architectural
variants (SIMD, CMP/SMT, and VLIW) for fairness of
performance comparison. The Intel compiler was the only

Fig. 10. Cycle distribution of 4-way MLEP with 16 registers
when using hand-parallelized codes.

0

20

40

60

80

100

C
yc

le
 d

is
tri

bu
tio

n
(%

)

Last iteration If-conflict Parallel Serial

ai
fft

r

ai
iff

t

ba
se

fp

id
ct

rn

m
at

rix

au
tc

or fft

vi
te

rb

rg
bh

pg

be
zi

er
fix

ed

be
zi

er
flo

at

good available candidate since it automatically parallelizes
codes for TLP and simdizes them for SIMD execution. Using
different compilers for performance comparison would make it
difficult to see the architectural advantages due to their different
abilities.

Each benchmark is measured in several aspects. The “icc-
simd” category means that the codes are automatically
simdized by the Intel compiler and executed on the Intel
processor. The icc-thread category implies that parallel loops
are automatically identified by the Intel compiler but, executed
on our platform. Our platform supports x-way extension, and
each thread uses y registers. Similarly, “hand-thread” is the
same as “icc-thread” except that the codes are parallelized by
hand from [8].

2. Instruction Overhead

There are two kind of instruction overhead in our
architecture: parallelization overhead and register spill
overhead. The parallelization overhead consists of parallel code
overhead and thread management overhead. The parallel code
overhead results from code transformation of serial codes into
parallel versions (conversion of the OpenMP-directed parallel
loops into subroutine-based forms). The thread management
overhead is caused by the execution of thread library functions.
The parallelization overhead is not avoidable in TLP
programming, but the register spill overhead is caused by the
lack of available registers in parallel execution due to the
minimal extension in the hardware portion of our architecture.

Figure 9 shows the dynamic instruction overhead of hand
parallelized codes with respect to serial codes. The instruction
overhead of parallelized benchmarks compared to serial ones is
around -1.0% for 16 registers, 21.7% for 8 registers, and 32.0%
for 4 registers per thread on average. The overhead for 16
registers implies a parallelization overhead, which is very
insignificant in most cases except for basefp, viterb, and rgbhpg.

ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al. 583

In this case, some benchmarks have negative instruction
overhead for 16 registers, since the translated codes from the
Omni compiler may allow the gcc compiler to generate better
quality of codes.

3. Speedup

Table 1 shows the speedup of Intel SIMD and our proposed
architecture, MLEP, with respect to serial execution. In the
execution of parallel codes automatically identified by the Intel
compiler, MLEP with 4 and 8 registers achieved weaker
performance than the Intel SIMD execution due to register spill
overhead. But with 16 registers, our approach outperformed
Intel SSE2/SSE3 4-way SIMD execution by 4.6% on 2-way

MLEP and 22.9% on 4-way MLEP. This better speedup results
from higher parallelism as shown in Fig. 1. Only in the matrix
benchmark, SIMD execution performs better than MLEP. In
hand-parallelized codes, MLEP achieved much higher
performance than auto-parallelization. In hand-parallelization,
the OpenMP directives are annotated in code by hand are used
as input for the compiler infrastructure. The benefit of
widening a data cache interface is 9.4% speedup in auto-
parallelization and 11.6% speedup in hand-parallelization when
using 4-way MLEP with 16 registers.

Because the Intel processor executes multiple instructions
per cycle in simdizable code regions, it is difficult to directly
compare the performance of MLEP and SIMD execution.
Because DLP can be exploited as ILP, the speedup resulting

Table 1. Speedup comparison of our architecture (icc-thread and hand-thread) and SIMD on Duo SSE2/SSE3 (icc-simd) in auto- and hand-
parallelized codes.

Auto-parallelization by the Intel compiler Hand-parallelization from [8]

icc-thread (2-way) icc-thread (4-way) Hand-thread (2-way) Hand-thread (4-way)Benchmarks Cache icc-simd
(4-way) 8 regs 16 regs 4 regs 16 regs 8 regs 16 regs 4 regs 16 regs

1 port 1.11 1.11 1.15 1.16 1.04 1.19 0.97 1.17
aifftr

Widening
0.93

1.12 1.12 1.17 1.17 1.12 1.30 1.08 1.33

1 port 1.12 1.12 1.14 1.15 0.98 1.26 0.87 1.12
aiifft

Widening
0.98

1.12 1.12 1.16 1.16 1.04 1.35 0.95 1.27

1 port 1.16 1.15 0.79 1.19 1.16 1.16 0.79 1.21
basefp

Widening
1.05

1.16 1.15 0.79 1.19 1.16 1.16 0.79 1.21

1 port 0.95 1.00 0.83 1.11 1.49 1.55 1.03 1.82
idctrn

Widening
1.00

0.98 1.05 0.89 1.23 1.56 1.63 1.09 1.99

1 port 1.00 1.00 1.00 1.00 1.12 1.14 0.92 1.18
matrix

Widening
1.15

1.00 1.00 1.00 1.00 1.12 1.14 0.92 1.18

1 port 1.27 1.75 1.12 2.78 1.27 1.75 1.12 2.78
autcor

Widening
1.82

1.39 1.98 1.26 3.86 1.39 1.98 1.26 3.86

1 port 1.07 1.05 1.00 1.06 0.99 1.40 0.68 1.42
fft

Widening
1.00

1.09 1.07 1.03 1.10 1.09 1.62 0.74 1.74

1 port 1.00 1.00 1.00 1.00 0.96 1.22 0.87 1.35
viterb

Widening
1.00

1.00 1.00 1.00 1.00 0.96 1.22 0.87 1.35

1 port 1.00 1.00 1.00 1.00 1.29 1.43 1.18 1.97
rgbhpg

Widening
1.00

1.00 1.00 1.00 1.00 1.29 1.43 1.18 1.97

1 port 1.00 1.00 1.00 1.00 1.56 1.56 2.15 2.15
bezierfix

Widening
1.00

1.00 1.00 1.00 1.00 1.57 1.57 2.19 2.18

1 port 1.00 1.00 1.00 1.00 1.42 1.42 1.16 1.83
bezierfloat

Widening
1.00

1.00 1.00 1.00 1.00 1.42 1.42 1.16 1.83

1 port 1.06 1.11 1.00 1.22 1.21 1.37 1.07 1.64
Average

Widening
1.09

1.08 1.14 1.03 1.34 1.25 1.44 1.12 1.83

584 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

from simdization on a multiple-issue processor is usually less
than the speedup resulting from simdization on a single-issue
processor. However, IPC on the Intel processor was 1.62 with
simdization and 1.77 without. This indicates that IPC is very
similar in non-simdizable and simdizable regions, and the
speedup of SIMD can be compared with 2.5-way (4-way/IPC)
of our approach. The performance gap between the ideal (Fig.
2) and the real measurement results from several factors: the
parallelization overhead, the register spills shown in Fig. 9, the
data cache misses (92.8% hit in 2-way and 90.2% in 4-way),
and the control-flow conflict (basefp: 24.7%, matrix: 11.0%,
viterb: 11.4%, and 8.5% in bezierfloat of the parallel execution
time in 4-way with 16 registers) as shown in Fig. 10.

Our architecture is scalable in terms of performance metrics.
Applying Amdahl’s Law to the icc-thread 2-way 16-register
speedup, we calculate that the parallel region is about 26.9% of
the total code. By applying this ratio to Amdahl’s Law with
4-way extension, we get the upperbound speedup of 1.25. The
higher measured speedup of 1.34 comes from the higher
number of data cache hits on the 4-way MLEP. Similarly, the
achieved speedup in hand-parallelized codes is 1.83, and the
calculated upperbound speedup based on Amdahl’s Law is
1.85 (61.1% parallel regions on average) on the 4-way with
16 registers.

Figure 10 shows the cycle distribution on the 4-way MLEP
with 16 registers using hand-parallelized codes. In the figure,
“serial” means a serial execution, “parallel” means that all
threads execute the same control-flow, “last iteration” means
that control-flows diverge at the last iterations of parallel loops
where there are not enough iterations to be fetched for all
threads, and “if-conflict” indicates real control-flow conflicts in
parallel regions. Only a few benchmarks include real control-
flow conflicts, and this strongly supports our motivation. The
control-flow conflicts occur in floating-point libraries in basefp
and bezierfloat, which EISC AE32000C emulates.

4. Complexity and Power Consumption

In addition to good performance, our architecture is also
attractive in terms of hardware complexity (logic gates) and
power consumption. The hardware complexity is measured
using Synopsys’ Design Compiler and the power consumption
is evaluated using the PrimePower tool. We used a statistical
activity based on a power analysis with a 0.18 µm CMOS
process at 1.62 V supply voltage and at 100 MHz clock
frequency. The toggle rate of primary inputs was 50%.

In total, there is a hardware complexity increase of 62.2%
(61,185 to 99,215 gates) in the 2-way and 182.9% (to 173,084
gates) in the 4-way MLEP. Power consumption increases by
41.9% (14.624 to 20.749 mW) in the 2-way and by 124.9% (to

32,884 mW) in the 4-way MLEP. Our proposed architecture
shows much lower power consumption and complexity than
typical dual-core and quad-core architectures [6]. Also, the
widened cache interface incurs a complexity overhead of
73.6%; however, this complexity is minimal compared to the
total. The difference with and without register duplication is
negligible. The resource of the fetch unit in serial and parallel
architecture is similar. The hardware complexity of the fetch
and decode units was increased by 61.9% in 2-way and
142.9% in the 4-way MLEP. This is due to the following
factors: division of the original register file into banks or
duplication of the original register file; renaming registers; the
addition of special registers (a stack pointer and a status
register); the addition of update units, buses and buffer
resources; and the addition of a thread controller unit. When
more execution units are added, resource utilization increases
by 80.6% in the 2-way and 254.9% in the 4-way extensions.
The increase in the number of memory and write back units
was 62.7% and 226.6% in the 2-way and 4-way MLEP,
respectively, (AE32000C combines these two units into one)
due to the duplicated buses and signals as well as additional
selection units.

V. Related Work

Our architecture is similar to SMT [16] and SIMD execution.
The SMT architecture allows multiple threads to compete for
and to share all of the processor’s resources every cycle;
therefore, it converts TLP into ILP [16]. Each thread executes its
own instruction streams. The clustered architecture
fetches/decodes multiple instructions in one cycle and distributes
them in separate instruction queues to clustered functional units
[17]. In [18], multiple processors execute independent instruction
streams, but in a lockstep manner between cores with an
appropriate synchronization through communication. Our
architecture uses only one instruction stream which is shared by
all cores, and our study demonstrates that the sharing is an
acceptable solution in embedded benchmarks.

In SIMD architectures some dedicated instructions are
developed to exploit DLP; however, not all instructions in ISA
can be used for SIMD execution because some of them do not
provide DLP, such as branch, stack push/pop, call instructions,
and so on. The limitation incurs a compiler frequently fail to
simdize the codes [10]. Also, in order to invoke SIMD
execution, data must be moved to SIMD register files, which
sometimes incur large overhead. MLEP allows instructions to
be executed at the same time by multiple threads like the
SIMD execution, but no special data movement is required for
parallel execution except for argument passing terminology
from a main thread to its child threads. In conventional SIMD

ETRI Journal, Volume 30, Number 4, August 2008 Jaegeun Oh et al. 585

architectures like MasPar [19], no barrier instruction is needed
since it does not support control transfer instructions. Our
approach is similar to the divergence control and dynamic wrap
formation of modern graphics processing units (GPUs) [20]. The
GPU approach relies on dynamic instruction wrapping to hide
memory latency and to better fill the hardware cores. A stack
structure is also used to control the divergence and convergence
of threads in our architecture. However, with only a hardware
mechanism to keep PCs and their associated information inside
the stack as in [20], convergence control is not guaranteed due to
the compiler’s jump optimization. To resolve this problem, we
use an explicit synchronization inside codes by introducing a
barrier instruction. Another difference is that we slightly modify
the cache interface by widening the cache, which improves
spatial locality between threads. The nVidia G80 GPU uses an
execution model which is very similar to ours, and uses Parallel
Thread Execution (PTX) which is a low-level parallel thread
execution virtual machine and ISA for general purpose parallel
thread execution. PTX programs are translated at install time to
the target hardware instruction set [21]. Also, the G80 GPU uses
predicate branches to resolve the divergence control problem [22].

VI. Conclusion and Future Work

In this paper, we introduced a new architecture to execute
parallel threads in lockstep by partially duplicating a single
pipeline and support from a compiler. The proposed approach
uses thread-level parallelism as in an SMT/CMP system, but
executes parallel threads in lockstep like a SIMD machine by
translating TLP into statically scheduled ILP by a compiler.

Our approach is more favorable than a typical SIMD
execution because of its wider range of applicability, much
easier and more robust code generation using TLP, the use of
the same and all original instruction sets for SIMD execution,
no initialization of SIMD registers, and higher parallelism due
to parallelization of the outermost loops. More importantly, a
programmer can easily annotate parallel loops, which allows a
compiler to generate high quality parallel codes. Also, our
hardware is much simpler than other architecture variants such
as SMT, CMP and in-order superscalar processors due to the
support of the compiler. This results in much lower power
consumption and resource utilization. The verification and
performance evaluation of our proposal was performed by
extending a commercial 32-bit embedded core and
synthesizing it on Xilinx FPGA.

A major drawback of our approach is that it requires multiple
computing resources in duplicated pipeline stages for multiple
threads. To solve this problem, we will design an instruction
scheduler to use hardware software pipelining (shifting
instruction sequences like software pipelining).

References

[1] H.C. Hunter and J.H. Moreno, “A New Look at Exploiting Data
Parallelism in Embedded Systems,” CASE, 2003, pp. 159-169.

[2] I. Karkowski and H. Corporaal, “Exploiting Fine- and Coarse-Grain
Parallelism in Embedded Programs,” PACT, 1998, pp. 60-67.

[3] J.E. Smith and G.S. Sohi, “The Microarchitecture of Superscalar
Processors,” Proc. of the IEEE, vol. 83, Dec. 1995, pp.1609-1624.

[4] D.M. Tullsen et al., “Simultaneous Multithreading: Maximizing On-
Chip Parallelism,” ISCA-22, June 1995.

[5] Analog Devices, Inc. ADSP-BF561 Blackfin Embedded
Symmetric Multiprocessor Rev. 0.

[6] ARM. ARM11 MPCore. http://www.arm.com/.
[7] EEMBC (EDN Embedded Microprocessor Benchmark

Consortium). http://www.eembc.org.
[8] J. Oh et al., “OpenMP and Compilation Issue in Embedded

Applications,” LNCS, vol. 2716, June 2003, pp. 109-121.
[9] Extendable Instruction Set Computer. http://www.adc.co.kr.

[10] A. Eichenberger et al., “A Tutorial on BG/L Dual FPU
Simdization,” BlueGen System Software Workshop, 2005.

[11] C. Kozyrakis and D. Patterson, “Vector vs. Superscalar and
VLIW Architectures for Embedded Multimedia Benchmarks,”
MICRO-35, 2002, pp. 283-293.

[12] D. Talla et al., “Evaluating Signal Processing and Multimedia
Applications on SIMD, VLIW, and Superscalar Architectures,”
ICCD, 2000, pp. 163-172.

[13] OpenMP Forum, http://www.openmp.org/. OpenMP: A
Proposed Industry Standard API for Shared Memory
Programming, Oct. 1997.

[14] M. Sato et al., “Design of OpenMP Compiler for an SMP
Cluster,” EWOMP, Sept. 1999, pp. 32-39.

[15] H.G. Nguyen, S.J. Hwang, and S.W. Kim, “Compiler
Construction for Lockstep Execution of Multithreaded
Processors,” CIT, 2007, pp. 829-834.

[16] J.L. Lo et al., “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multithreading,”
ACM Trans. Computer Systems, vol. 15, no. 3, 1997, pp. 322-354.

[17] J. Collins and D. Tullsen, “Clustered Multithreaded Architectures:
Pursuing both IPC and Cycle Time,” IPDPS, 2004, pp. 766-775.

[18] H. Zhong, S.A. Lieberman, and S.A. Mahlke, “Extending
Multicore Architectures to Exploit Hybrid Parallelism in Single-
Thread Applications, HPCA, Feb. 2007, pp. 25-36.

[19] J.R. Nickols, “The Design of the MasPar MP-1: A Cost Effective
Massively Parallel Computer,” IEEE COMPCON, Spring 1990,
pp. 25-28.

[20] W.W.L. Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO, Dec. 2007, pp. 407-420.

[21] T.R. Halfhill, “Parallel Processing With CUDA,” Microprocessor
Report, Jan. 2008.

[22] GeForce Family, http://www.nvidia.com/page/geforce8.html.

586 Jaegeun Oh et al. ETRI Journal, Volume 30, Number 4, August 2008

Jaegeun Oh received the BS degree from the
School of Electrical Engineering, Korea
University, Seoul, Korea, in 2003, and is
currently working towards his PhD in the same
school. His research interests include processor
and SoC design.

Seok Joong Hwang received his BS degree in
electrical engineering from Korea University,
Seoul, Korea, in 2005, and is working on his
PhD in electrical engineering with Korea
University. His research interests include
microprocessor architecture and compilers.

Huong Giang Nguyen received her BS degree
in information technology from Vietnam
National University, Hanoi, and she is now
working on her PhD in electrical engineering
with Korea University, Seoul, Korea. Her
research interests include computer system
architecture, multithreading, compiler technique,

and embedded systems.

Areum Kim received the BE degree in
electrical engineering from Korea University,
Seoul, Korea, in 2006, and is working on her
master’s degree in electrical engineering with
Korea University. Her research interests include
computer system architecture, multithreading
and compilers.

Seon Wook Kim received the BS degree from
in electronics and computer engineering from
Korea University, Seoul, Korea, in 1988. He
received the MS degree in electrical engineering
from the Ohio State University, Columbus,
Ohio, USA in 1990. He received the PhD
degree in electrical and computer engineering

from Purdue University, West Lafayette, Indiana, USA in 2001. He
was a senior researcher at the Agency for Defense Development from
1990 to 1995, and a staff software engineer at Intel/KSL from 2001 to
2002. Currently he is an associate professor with the School of
Electrical Engineering of Korea University. His research interests
include compiler construction, microarchitecture, and SoC design. He
is a senior member of ACM and a member of IEEE.

Chulwoo Kim received the BS and MS
degrees in electronics engineering from the
Korea University, Seoul, Korea, in 1994 and
1996, respectively, and the PhD degree in
electrical and computer engineering from the
University of Illinois at Urbana-Champaign, in
2001. Since September 2002, he has been with

the Department of Electronics and Computer Engineering, Korea
University, where he is currently an assistant professor. His research
interests are in the areas of broadband processor design, clocking and
latching, low-power/high-performance circuits, and floating-point unit
and high-speed I/O. He has authored over 20 papers and one book
chapter.

Jong-Kook Kim is currently an assistant
professor with Korea University, Seoul, Korea.
He received his BS in electronics engineering
from Korea University in August 1998. He
received his MS and PhD degrees in electrical
and computer engineering from Purdue
University in May 2000 and August 2004,

respectively. He has co-authored 15 technical papers. His research
interests include heterogeneous distributed computing, ubiquitous
computing, computer architecture, performance measures, resource
management, evolutionary heuristics, energy-aware computing, and
reliable and collaborative computing. He is a member of the IEEE and
ACM.

