
ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 565

As networks increase and cross-convergence occurs
between various types of devices and communications,
there is an increasing demand for interoperable service in
the business environment and from end users. In this
paper, we investigate interoperability issues in the digital
rights management (DRM) and present a practical
framework to support interoperability in environments
with multiple devices. The proposed architecture enables
end users to consume digital content on all their devices
without awareness of the underlying DRM schemes or
technologies. It also enables DRM service providers to
achieve interoperability without costly modification of
their DRM schemes.

Keywords: DRM, interoperability, content protection,
security.

Manuscript received Nov. 6, 2007; revised Feb. 26, 2008; accepted Apr. 15, 2008.
This work was partly supported by the postdoctoral fellowship program of IITA, MKE

(Ministry of Knowledge Economy) and 2008 Hongik University Research Fund, Rep. Korea.
Seong Oun Hwang (phone: 82 41 860 2298, email: sohwang@hongik.ac.kr) was with

Broadcasting & Telecommunications Convergence Research Laboratory, ETRI, Daejeon, Rep.
of Korea, and is now with the Department of Computer and Information Communication
Engineering, Hongik University, Chungnam, Rep. of Korea.

Ki Song Yoon (email: ksyoon@etri.re.kr) is with SW & Content Research Laboratory, ETRI
Daejeon, Rep. of Korea.

I. Introduction

The Internet has greatly facilitated the distribution and
exchange of information, and this has led to increasing
problems regarding the issue of intellectual property and
copyright infringement. Digital content is by nature very
vulnerable to unauthorized distribution and use. To cope with
this problem, digital rights management (DRM) technologies
have been developed. Although they have functioned as
intended, they have caused an unexpected problem. Most
DRM systems are not interoperable. As a result, consumers
cannot play their purchased, DRM-protected products on all of
their devices.

For example, a mobile phone service provider in South
Korea prohibited playback on their mobile phones of digital
songs purchased from other online sites. It caused many users
to complain and to file lawsuits. A survey by Indicare [1]
shows that 86% of potential digital music customers would
rather pay 1 Euro for interoperable content (having the right to
use it in more than one device) instead of paying just 50 cents
for device bound content. The same applies to the business
sector. Recently, as DRM 2.0 specifications of Open Mobile
Alliance (OMA) [2] have been implemented and
commercialized, interoperability issues between OMA DRM
and MS DRM have risen. Therefore, the issue of DRM
interoperability has become a problem which should be solved
to benefit businesses as well as consumers.

The contribution of this paper is to present a practical
framework to support DRM interoperability among resource-
limited devices such as mobile phones and portable devices.
The framework is based on two concepts: domain and profile.
The domain concept enables the framework to be interoperable
regardless of underlying devices including consuming

Interoperable DRM Framework for
Multiple Devices Environment

 Seong Oun Hwang and Ki Song Yoon

566 Seong Oun Hwang et al. ETRI Journal, Volume 30, Number 4, August 2008

environments. The profile concept enables the framework to
achieve interoperability without modification of participating
DRM schemes.

The remainder of this paper is organized as follows. In
section II, we provide an overview of previously proposed
approaches toward DRM interoperability. Section III presents
our approach at a very high level. Section IV gives detailed
information of system components comprising our prototype
DRM framework. Section V presents an analysis of our
framework by comparing it with other schemes. Section VI
concludes the paper with a discussion of the contribution of the
paper and future work.

II. Related Work

In this section, we first give an overview of some of existing
approaches toward interoperability. Then we analyze their
characteristics and classify them into types of interoperability.

1. Overview

A. MPEG-21

MPEG-21 [3] provides standards for protection and
management of multimedia content by introducing a hooks
architecture and interfaces between intellectual property
management and protection (IPMP) tools. That is, MPEG
IPMP does not standardize IPMP itself; rather, it standardizes
the IPMP interface, which allows flexibility between the IPMP
system and applications. A terminal accesses the IPMP tool list
of protected content media and determines the IPMP tool that
is required to consume the content. MPEG IPMP tries to solve
interoperability issues by searching for and installing the
required DRM tools whenever they are needed.

B. OMA

The OMA DRM specification version 2.0 released in
February 2004 provides additional features and a significantly
higher level of security through mechanisms based on public
key infrastructure (PKI) to protect high-value digital contents,
such as MP3 audio files or video clips. OMA DRM specifies
export of content and its associated usage rights to other DRM
specifications, but it does not address the security issues which
arise during the export process. It specifies these as being
beyond the scope of the standardization.

C. Digital Media Project

DMP [4] released a comprehensive technology specification
for interoperable digital rights management as well as
applications within and across media value chains. The

documents specify that all the actors in the value chain perform
some functions to do business. Those functions can be
decomposed into smaller primitive functions, which seem to be
implemented into a set of tools called interoperable DRM
platform (IDP) toolkit. Unlike MPEG, DMP defines its own
DRM formats such as DRM/Authentication Messages,
Domain/ Access Protocols, and so on.

D. Coral

The Coral Consortium [5] approach is a DRM-neutral
interoperability framework to solve multiple DRM problems.
While maintaining current DRM systems and devices, it tries
to achieve service-level interoperability by providing trusted
interfaces and functions that mediate differences between
DRM schemes, such as rights meditation, content
transformation, and repackaging.

2. Classifications of Existing Approaches

The following subsection presents a classification of the
approaches according to the type of interoperability they
provide: full-format, building block, and translation-based
interoperability. Refer to Koenen’s paper [6] for a similar
classification.

A. Full-Format Interoperability (DMP, OMA, etc.)

This seems to be one of the most complete ways of
providing interoperability at first glance. This approach has
been adopted by most DRM standardization organizations and
vendors. In principle, it seems difficult for a single vendor or
organization to cope with interoperability issues in the DRM
area with this approach. We note that since this approach
accompanies disclosure of the entire structure of DRM, it may
be very vulnerable from the security point of view.

B. Building Block-Based Interoperability (MPEG-21)

Under the assumption that all the terminals and application
players can access all the DRM tools (authentication,
encryption/decryption, watermark, and so on), it allows us to
search/download and use the appropriate tools when
consuming a protected content. Compared to other approaches,
it is highly flexible. However, in reality, only a particular tool
can be available to a particular platform. It is not clear that all
devices provide all the resource required to store and execute
when accessing the multimedia content which belongs to a user.

C. Translation (Transformation)-Driven Interoperability (Coral)

This approach assumes the existence of a trusted third party
(TTP) connected to the network. The TTP provides

ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 567

interoperability by giving translation operations between
different formats – protected content formats, rights, and
messages. Translation (or transformation) operations are likely
to incur information loss which may occur during incorrect
mapping from the source to the destination DRM scheme.
Another drawback of this approach is that it requires the
devices to be connected to the network, at least one time, when
the device initially connects to the interoperable service
provider.

Next we classify the approaches into the two categories of
intra-DRM and inter-DRM interoperability.

D. Intra-DRM Interoperabililty (DMP, OMA)

This approach tries to achieve interoperability between
DRM schemes which implement the same DRM specification.
Most standard organizations have focused their activities on
supporting interoperable DRM service within their own DRM
schemes. So far, there seems to have been no distinct effort or
cooperation between standard organizations toward
interoperability between heterogeneous DRM schemes.

E. Inter-DRM Interoperabililty (MPEG, Coral, Proposed
Scheme)

This approach tries to address the interoperability between
different DRM schemes which implement different DRM
specifications. This is the level of interoperability that the end
users eventually want to be deployed in their devices. To
address this issue appropriately, we need to consider the
interoperability issues inherent in DRM.

One critical factor that makes interoperability difficult is the
trust model. Different DRM schemes are usually designed
under different trust models. For example, the trust model of
OMA DRM is based on PKI. Through a public key certificate
and digital signature, it allows one to identify and authenticate
the other party, and it guarantees the integrity and secrecy of an
exchanged message. MPEG-21, by contrast, does not specify a
particular authentication framework; rather, it determines a
specific authentication mechanism based on conversational
negotiation. That is, under the MPEG-21 scheme, any
authentication mechanism such as X.509 public key certificates,
Kerberos shared-secret tickets, or password digests can be
deployed. The trust model directly affects the rights model and
licensing model. To express a usage rights, OMA DRM uses
OMA DRM Rights Expression Language (REL) version 2.0
rooted in ODRL [7], whereas MPEG-21 uses MPEG-21 REL
2.0 rooted in XrML [8]. As Safavi-Naini’s paper [9] indicates,
it is not straightforward to directly translate rights expressions
from MPEG-21 to OMA, or vice versa. Other factors that
make it difficult to provide interoperability include differing
identification schemes (e.g., content, device) and differing

protected content formats (e.g., MPEG-21: DID, DII, OMA:
DCF, PDCF) taken by DRM schemes.

So far, we have discussed the inter-DRM interoperability
issue at a very high level. There have been similar approaches
towards interoperability at the system level. Jamkhedkar and
others [10] proposed a layered DRM architecture and
approached the issue by standardizing interfaces between the
layers. Michiels and others [11] took a layered approach
different from Jamkhedkar’s and refined the DRM functions
within the layers.

III. System Overview

To design an interoperable DRM, we need to consider the
problem further on the implementation level as well as the
conceptual level. The following conceptual and
implementational issues regarding DRM interoperability are
drawn from our studies of the previously mentioned
approaches.

1. Design Considerations

A. Reduction of Information Leak or Loss

Except for MPEG, most approaches have intrinsic security
issues in the sense that an exported content item from a source
DRM scheme is decrypted and imported into a target DRM
scheme. During the export-import process, the content has a high
risk of unintentionally revealing the original content itself to the
outside. Another security issue with the existing approaches is
that they reveal their DRM structures to each other, for example,
what the DRM protected content format looks like, how the
DRM scheme works, and so on. These can be further sources of
security vulnerability. The revelation problem of DRM structure
was also addressed in the paper [12]. To cope with these issues,
we need to prevent the extraction of original content media from
protected content media during the process. We also need to
protect each participating DRM scheme’s internal structures.
Information loss may be incurred while transforming a content
protected by source DRM scheme to the one protected by target
DRM scheme.

B. Transparent Service to End User

A DRM system usually works by controlling the access of the
user to a protected content based on the allowed rules described
in the rights objects. It puts some restrictions on the user’s use of
content. An interoperable DRM system usually requires the
installation of additional modules on the user’s side, which
exacerbates the situation or problem. Therefore, additional
processes which overburden users should be kept hidden or

568 Seong Oun Hwang et al. ETRI Journal, Volume 30, Number 4, August 2008

minimized as much as possible from the user’s point of view.

C. Complexity of Implementation and Modifications to Existing
Environment

A DRM system should be designed to apply DRM functions
easily without major modifications of participating DRM
modules or protected content format as well as existing player
environment such as media players. In principle, it might be
possible to achieve interoperability between totally different
DRM schemes if we invest a huge effort, time, and resources,
although that does not seem very cost-effective. Most DRM
schemes that aim to achieve interoperability disregard this
aspect and do not succeed.

2. DRM Architecture

We define interoperability as the ability to enable users to
consume their protected content regardless of the underlying
infrastructures, such as DRM schemes, devices, networks, or
services, in a transparent way and with no information loss.

We describe our DRM architecture in the abstract view of
component models, each of which constitutes a consistent DRM
scheme. This high level approach is convenient for designing
and analyzing a DRM scheme. From this point of view, a DRM
scheme, a collection of component models, is thought to be an
enabler that performs a service to establish a trust environment
where digital content and its embedded rights are executed. In
our approach, we define a basic foundational role model and
further construct additional models on that.

A. Role Model

We identify actors who perform major functions in our
DRM scheme. An actor is a logically independent entity in
terms of performing functions. It does not need to exist
independently in the physical sense. A set of functions
performed by a number of actors can be done by one physical
entity in the real world. In the following, we use the term
“traditional” to indicate the context of existing DRM schemes
which do not provide interoperability. The proposed DRM
scheme referred to as S-DRM (Standard-DRM) which is
intended to provide interoperability comprises the following
actors:

- Certificate authority (CA) is a TTP that provides services
for the creation and distribution of electronic certificates.

- T-DRM service provider is an existing, traditional DRM
service provider which issues usage rights and manages
DRM tools on the end user’s side.

- S-DRM service provider provides an interoperable DRM
service environment where a content item protected under a

traditional DRM scheme can be consumed using S-DRM
modules, such as an S-DRM profile generator, an S-DRM
rights generator and an S-DRM agent. The key role of the
S-DRM service provider is to provide domain functions
which enable interoperable DRM service irrespective of
underlying traditional DRM schemes.

- S-DRM profile generator generates a profile for traditional,
protected content. It is usually done by a T-DRM service
provider which provides the corresponding content.

- S-DRM rights generator issues a rights object that enables
interoperable use of traditional protected content. It is
usually done by a T-DRM service provider which provides
the corresponding content.

- S-DRM agent is a minimal unit trusted by the S-DRM
service provider. It is installed on the end user’s device and
provides access control of protected content, resolution of
usage rights, and domain processing.

- End user must belong to at least one domain to receive an
interoperable DRM service and access to protected content
using the S-DRM agent.

B. Domain Model

A domain is a logical concept for grouping entities, including
devices, users, organizations and so on, that access and
consume protected content under the same usage rights. In this
paper, a domain consists of multiple participating devices. On
the participating devices side, a domain manager is installed.
Domain managers can be classified into two types according to
function: master and slave. All devices in a domain except for
the master are considered peers. The master functions as a
server for the client of peers. Therefore, a domain consists of a
master domain manager and one or more slave domain
managers. A master domain manager creates a domain and
registers it with the S-DRM domain server. During the
registration, the master domain manager establishes an
authorized domain (domain ID, domain key, domain policy)
from the S-DRM domain server. After a domain is created,
devices can join or leave the authorized domain by having their
slave domain manager run a join or leave protocol with the
master domain manager. Unlike a slave domain manager, a
master domain manager executes a registration or update
protocol with the S-DRM domain server. We assume that a
slave domain device can be connected to the master domain
device through various kinds of device-to-device networks
including IEEE 1394, USB, Ethernet, Bluetooth, and so on. We
also assume that a master domain device can be temporarily or
intermittently connected to the network. It is not necessary for a
master domain device to be always connected to the network.
The separation of roles between the master and slave domain

ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 569

manager reduces the device network connectivity requirement.

C. Profile Model

It is usually difficult to get inter-DRM interoperability between
heterogeneous DRM schemes because DRM vendors transform
original content into protection formats of their own. They only
have access to their own DRM (client) modules, which interpret
and process the formats on the end user’s side. We call this client
DRM module a DRM agent. To enable a uniform, generic
interpretation and processing of different DRM schemes in our
interoperable DRM framework, we introduce the concept of
profile. A profile can be defined as an information structure
representing each traditional DRM scheme. It is a minimal,
essential information structure that enables equivalent simulation
of each traditional DRM process in our framework by providing
several kinds of information, such as protected content structure,
usage rights, data extraction method, and data processing method.
The traditional DRM service provider, which is intended to
provide an interoperable DRM service, describes or puts DRM
structure information into the profile template which is provided
by S-DRM service provider. The profile model defines content
structures, rights, and the required processing method of
traditional DRM schemes.

D. Trust and Security Model

We assume that there is an S-DRM service provider which is
trusted by the traditional DRM service providers. The
assumption is very natural because a trust relationship is
commonly achieved based on bilateral agreements between an
S-DRM service provider and traditional DRM service providers.
An S-DRM service provider enables interoperable DRM service
by providing trust infrastructure and software tools.

We also assume that all the entities described in this role
model have their own unique private/public key pairs and
certificates. This assumption is also appropriate in the sense
that public key infrastructure has becomes an essential part of
current digital commerce. To ensure the enforcement of DRM
policies, it is recommended that rendering devices, such as
mobile phones or MP3 players, be equipped with a trusted
computing base (TCB) which can include a tamper-resistant
module, such as a trusted platform module (TPM) [13]. A
TPM can be used to provide secure storage for important
information, such as keys, and cryptographic operations, such
as encryption and random number generation. As in most
classical DRM security models, we assume that content is
encrypted under a content encryption key (CEK). However, the
CEK is delivered as a form of rights to the DRM agent on the
user’s side as encrypted under the key of the domain which the
DRM agent belongs to. The CEK should have a high enough

security level so that without the CEK itself, the attacker cannot
retrieve the original content item from the encrypted content.
We assume that the attacker cannot access the DRM agent’s
domain key which will be explained later. To this end, it is
recommended to keep the domain key in TPM storage.

E. Rights Expression Model

There is also a real need for interoperability in the rights
expression model, particularly between the ODRL series (OMA
REL) and the XrML series (MPEG-21 REL, Microsoft REL).
As is well known, those RELs are based on the same language,
the DPRL [14]; therefore, they are broadly very similar in
structure and semantics. We define our REL by starting on the
basic structure of ODRL V1.1 and augmenting it with elements
in XrML 2.0 as needed. ODRL is comparatively simple and
clearly defines both the formal model for rights expression
(rights, permission, assets, and so on) and the semantics of the
concrete elements which are used to express a rights instance
(play, pre-pay, and so on). The key reason we chose this
approach is our observation that people want simple but clear
rights expression in the real world, at least regarding
interoperability. Our approach is partly supported by the results
presented in [9], which concludes that direct translation between
ODRL and XrML is possible without loss of information except
for several complex contexts and situations.

In the following, we show how the traditional DRM and

proposed DRM systems work regarding interoperability.
First, we assume that there are two different DRM schemes,

T-DRM A and T-DRM B, respectively installed on two
terminals, and S-DRM not installed. At this stage, there is no
interoperability between two terminals. For example, content
that is protected by the T-DRM A service provider can be
consumed by the T-DRM A agent on terminal I under the
permission dictated by T-DRM A rights, but not on terminal II.
This is because T-DRM A content cannot be interpreted and
processed by the T-DRM B agent on terminal II or vice versa.

Figure 1 shows the functional architecture of the proposed
system. Here we explain how to provide interoperability when
moving protected content from one terminal to another. We
assume at this time that S-DRM modules are installed on two
terminals. A user downloads and installs both the S-DRM
rights and the T-DRM A profile from T-DRM service provider
A. The S-DRM on terminal I sends both the S-DRM rights and
T-DRM A profile to the S-DRM on terminal II. At this time,
the T-DRM A content can be sent between terminals using the
S-DRM transfer function or as stored in the memory card. The
T-DRM A profile can be sent using the same transfer function
or over the server transmission channel. By accessing the

570 Seong Oun Hwang et al. ETRI Journal, Volume 30, Number 4, August 2008

Fig. 1. Functional architecture of the proposed system.

T-DRM service
provider B

Profile

Right
object

DRM content DRM content

S-DRM agent

Domain B

Domain A

Profile generator
Rights object generator

S-DRM service
provider

Profile generator

Right object

Rights object generator

S-DRM service
provider

S-DRM domain
server

T-DRM service
provider A

S-DRM agent

S-DRM agent

Profile

T-DRM A profile, the S-DRM on terminal II retrieves the
information needed to access and process the T-DRM A
content. From the S-DRM rights, it also retrieves the
information needed to decrypt the T-DRM A content.

IV. System Details

This section covers details of the proposed framework:
S-DRM internal structure, profile, key architecture, and
protocols.

1. S-DRM Internal Structure

S-DRM at the user’s side consists of the S-DRM agent and its
interface to outer rendering applications. Figure 2 shows the
internal structure of S-DRM. The application service interface
(API) [15] is open to applications and satisfies two requirements.
First, an application should be easily developed by just looking at
the interface, without deep knowledge of DRM technologies.
Second, it should be flexible enough to support various DRM
business models. However a DRM scheme with open interfaces
and components may have security weaknesses, so it is
necessary to minimize or control the level of openness.

2. Profile

The S-DRM profile specifies the data and the data

Fig. 2. Internal structure of S-DRM agent.

…

S-DRM agent

Appl-1

Transfer
manager

Content

Appl-n

Application service API

Terminal S-DRM agent

Rights
handler

Domain
manager

Secure storage
manager

Transfer
manager

DRM content
access

Profile
handler

②

①

③

④

S-DRM rights
profile
key

Decryptor

Secure
storage

extraction/processing method which allow the S-DRM to
process the protected content formats provided by traditional
DRM vendors. It is specified using XML schema. The S-DRM
is mostly concerned with extraction of data, interpretation of
data, decryption of media data, and communication with
rendering application.

The S-DRM profile schema [15] consists of information on
the profile itself and information on DRM content.

(1) The profile context consists of the profile structure and

context structure. The profile structure contains metadata on the
profile itself, metadata on the DRM content, and information
extracted from the DRM content. The context structure

ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 571

contains information such as identification and the version of
the targeting DRM scheme.

(2) The DRM content largely consists of the DRM metadata,
the protected content structure, and the inventory structure. The
DRM metadata structure specifies how to extract metadata from
the DRM content. The metadata from the DRM content includes
the following: DRM scheme ID, DRM scheme version, content
ID, MIME type of DRM content, file extension of DRM content,
MIME type of raw content, encryption method, and right issuer
URL. The protected content structure provides the information
needed to retrieve raw content from the DRM content, such as
plain_text_length and encrypted data. The inventory structure
serves as an efficient tool to express the profile by reducing
redundancy, but it does not express the DRM content itself.

To maximize the universality or power of expression, we

referred to the DRM reference model by MPEG LA [16]. We
also consider exceptional cases for which profiling is not
appropriate. For example, for the cases in which extraction or
processing of specific data is so complex that the profiling of
specific DRM functions is not efficient or not allowed due to
security policy, we allow plug-in architecture as an alternative
method, which can be implemented using XML-RPC [17]
functions provided by a specific DRM scheme or vendor.

3. Key Architecture

Keys are largely classified into three kinds of keys, a device-
related one (device key), a content-related one (content
encryption key), and a key binding those two keys (domain
key). The content encryption key uses the AES [18] encryption
algorithm with a 128-bit key. The device key and the domain
key use the RSA [19] encryption algorithm with a modulus
1024-bit key.

A. Device Key

Every device has its own public key/private key pair and a
device certificate which is installed at manufacturing time by
the device manufacturer. Its form can vary depending on the
type of device and manufacturer. We assume the existence
(use) of a secure storage area for the key storage. For a mobile
terminal, a universal subscriber identity module (USIM) is an
example of a secure area. The device key is used to encrypt
information, for example, a domain key that should be
transmitted securely to each individual device.

B. Content Encryption Key

The content encryption key is used to encrypt a media
content item. The content encryption key is encrypted under
the content recipient’s domain key (which is contained in the

rights) and delivered to the content player of the content
recipient device.

C. Domain Key

The domain key is assigned to each domain that consists of a
number of devices and is used to encrypt the content
encryption keys. When an S-DRM agent is installed, a domain
is established. This newly generated domain is managed by a
master domain manager. During the registration, the master
domain manager gets the domain key from the S-DRM
domain server. Every device can be joined to the domain by
allowing the slave domain managers on the devices to conduct
a join protocol with the master domain manager under the
intervention of the user or not. After the join protocols are
executed successfully, all the devices pertaining to the domain
result in sharing the same domain key. If a device leaves the
domain, the corresponding domain manager should update the
domain key and distribute it among the participating devices.

4. Protocols

This section explains protocols to support operations
introduced in the above architecture: basic setting, S-DRM
terminal registration, domain management, and content
rendering.

A. Basic Setting

To provide interoperability with traditional DRM schemes,
both S-DRM rights and T-DRM profiles should be transferred
to the S-DRM agent on a terminal. To do this, the traditional
DRM service provider should provide the following services:

- To allow the S-DRM terminal to join or leave the S-DRM
domain using the S-DRM domain manager

- To generate a T-DRM profile using the S-DRM profile
generator and send it to the S-DRM agent

- To generate S-DRM rights using the S-DRM rights
generator and send the data to the S-DRM agent

A profile can be open to or kept secret from outside world.
This depends on the security policies of traditional DRM
vendors. If they choose an open policy, the secrecy of the
DRM system is equivalent to one of the open DRM systems
pursued by standardization organizations such as OMA, DMP,
and so on. If they keep their profiles secret, the profiles should
be securely kept. In this case, profiles should be transmitted to
and accessed from the authenticated S-DRM agent. To do this,
the vendors may use the domain key to encrypt the profiles.
Domain keys are generated during S-DRM terminal
registration which will be further explained. We note that a

572 Seong Oun Hwang et al. ETRI Journal, Volume 30, Number 4, August 2008

domain is managed by the S-DRM service provider, and
different T-DRM service providers do not need to agree upon a
common domain.

B. S-DRM Terminal Registration

To get S-DRM rights issued, an S-DRM terminal needs to be
registered with a T-DRM service provider. Before registering
with the T-DRM service provider, a domain context should be
established. The S-DRM terminal requests domain setup to the
domain server on the S-DRM service provider’s side. During
domain setup with the S-DRM service provider, the domain
context is established on the S-DRM terminal. The domain
context includes domain ID, domain certificate, domain key,
list of participants’ (devices’) IDs, expiration date, and domain
constraints (that is, the maxim number of terminals which can
join the domain). Then, the S-DRM terminal registers its
information with the T-DRM service provider. The information
includes the protocol version, T-DRM terminal ID, S-DRM
terminal IDs, and domain context. This registration protocol
should be executed whenever the domain is updated.

C. S-DRM Domain Management

In this subsection, we describe how to set up, join, or leave
an S-DRM domain.

Protocol to Set Up/Update a Domain
1. The device initiates contact with the S-DRM domain server.
2. The S-DRM domain server authenticates the device and

communicates the domain context (including a
new/updated domain key, domain ID, a list of participating
devices, and the maximum number of participating
devices) to the device over the secure authenticated
channel (SAC).

3. The device establishes its own domain context and stores
the domain key at the secure storage of the device.

In this protocol, for authentication of the device, the S-DRM
domain server sends an authentication request to the device. It
then extracts the device ID from the certificate sent by the
device. It then checks that the certificate sent by the device is
valid.

Protocol to Join a Domain
1. An S-DRM slave domain manager device initiates contact

with the S-DRM master domain manager.
2. They establish an SAC and authenticate each other.
3. The S-DRM master domain manager checks if a given set

of domain rules and policies (such as the number of
acceptable devices in the domain) are met. If the check
result is OK, then it transmits a domain key to the device

over the SAC and updates the domain context.
4. The S-DRM slave domain manager stores the domain key

at the secure storage area.

In this protocol, the S-DRM master domain manager takes a
delegated role of joining an S-DRM slave domain manager to
the domain on behalf of an S-DRM domain server. As another
option, to improve the security of the domain key, it is possible
to update domain keys whenever the join protocol is performed.
In this case, the S-DRM master domain manager performs the
update procedure with the S-DRM domain server and
broadcasts the new domain key to the connected member
devices including the joining S-DRM slave domain manager.
To reduce the overhead caused by frequent updates of domain
keys and to strike the balance between performance and
security, we recommend that the domain key remains the same
when the join protocol is performed. This join protocol can be
seen as a limited version compared to the full version of the
join protocol, where the domain key is updated whenever the
join protocol is performed.

Protocol to Leave a Domain
1. An S-DRM slave domain manager device initiates contact

with the S-DRM master domain manager.
2. They establish an SAC and authenticate each other.
3. The S-DRM master domain manager performs the update

procedure with the S-DRM domain server.
4. The master domain manager broadcasts the new domain

key to the connected member devices except the leaving
slave domain manager over SAC.

Unlike the join protocol, the domain key should be updated
and distributed among the participating devices whenever the
leave protocol is performed so that the device which is leaving
cannot consume (decrypt) new content items published in the
domain after it leaves the domain.

Note that when a user requests to acquire a new content item
after a domain key is updated, the content item and a new
domain key are transmitted to the device. During this
procedure, the domain key version of the device is checked
against the version of the S-DRM domain server. If the domain
key has not been updated, then new domain keys are
transmitted to the device.

In the leave procedure, when the network connection
between the S-DRM master domain manager and the S-DRM
domain server is not available, steps 3 and 4 can be performed
afterwards when the network is available. In this case, the
S-DRM master domain manager generates and broadcasts a
temporary, short-lived domain key to slave domain managers
except the leaving S-DRM slave domain manager. The
temporary domain key should be replaced with the one issued

ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 573

by the S-DRM domain server later.
Users, particularly advanced users, can register new devices

in their multiple devices environment. However, to reduce the
difficulty or complexity a user might feel during registration,
we provide an automatic registration method that does not
require the user’s involvement.

The concept of domain in DRM originally was intended to
allow content sharing among devices owned by an entity, for
example, the same household [20]-[22]. Although the usage
scenarios of the proposed method are somewhat similar to those
of previous methods based on the domain concept, the details
including implementation mechanisms and protocols are different.

D. Content Rendering

When a user plays DRM-protected content, the following
occur in the background.

1. The application gives the name of the protected content and
rights to the S-DRM agent.

2. The S-DRM agent authenticates the rights and retrieves the
domain key from secure storage of the device.

3. The S-DRM retrieves the content encryption key from the
rights using the domain key and decrypts the protected
content using the content encryption key.

4. The application renders the decrypted content by the
S-DRM agent.

V. Analysis

In this section, we present the case study result and compare
the proposed scheme with other interoperable DRM schemes.

Before this research, we implemented two DRM systems in
the mobile communication and entertainment environments:
an OMA DRM version 2.0 system and our proprietary DRM
system. The DRM agents of the systems were employed on a
smartphone (ARM9, 400 MHz, CDMA1x EDVO 2.4 Mbps).
We produced an OMA DRM protected content item and its
related rights. From the rights, we retrieved the content
encryption key and constructed other rights which could be
interpreted by our proprietary DRM agent. The critical point is
how to construct a profile template for OMA DRM 2.0. Note
that the objective of the case study is to check the feasibility of
the profile concept rather than to establish a normative,
extensive form of profile. To name a few items in the profile, it
includes an encryption algorithm, a padding scheme, the rights
issuer URL, and the offset/size/type of encrypted data. In the
profile, we support AES-128-CBC and AES-128-CTR as
encryption algorithms. We support RFC 2630 [23] as padding
schemes in addition to non-padding schemes.

In the following, we analyzed how well the proposed system

addressed the issues that were set forth in section III.1.
From the security point of view, the proposed system

achieved the security requirements previously discussed,
namely, the prevention of information loss or leakage during
interoperable DRM service. The proposed scheme avoids this
through the deployment of the secure profiling concept. It
avoids direct translation or transformation which might be
vulnerable to information loss. That is, the proposed scheme
starts off without changing the existing DRM information
structure. It only allows the addition of information structures
needed to bridge different DRM structures. Therefore, it is
relatively free from the problem of information loss.

Content protection in our proposed system is dependent
upon the security of domain keys. For attackers to decrypt
content, they need to access CEK which was already stored as
encrypted under the domain key. However, they fail because
the domain key is managed at the access controlled file system
provided by mobile device manufacturers in our case study. To
improve the security level, we recommend using hardware
modules such as smartcards, and in the case of some mobile
phones, USIM.

From the user’s point of view, the system provides a means
to control the level of any awareness or actions at the end user’s
side. To maximize transparency, the system provides DRM
interoperability without requiring any awareness or action on
the part of users. It is reported that only Coral provides
transparency. The proposed scheme provides transparency
based on a domain model which allows actions usually done
by a user to be performed by the server on behalf of the user.
The user does not need to be aware of the details of devices or
protection schemes or which devices support which protection
schemes. Instead, a user only needs to perceive the external
views without considering the underlying protection schemes.

The traditional approaches toward DRM interoperability
require very high implementation complexity, which is not
appropriate for devices such as mobile phones or portable
media players, which have very limited resources (CPU,
memory) and are intermittently connected to the network.
From the implementation complexity point of view, many
traditional schemes require modifications to protected content
format, playback software, or DRM modules, in part or as a
whole. In general, it is inevitable that DRM makes some
modifications to playback software.1) To reduce the number of
necessary modifications, the proposed scheme opens an API
set in order to make possible modifications fewer, easier, and
timelier. Another issue to consider when implementing
interoperable DRM service is the dependency of network

1) Note that the proposed framework is based on the chains of trust among parties,
including playback software providers, T-DRM service providers, and S-DRM service
provider.

574 Seong Oun Hwang et al. ETRI Journal, Volume 30, Number 4, August 2008

connectivity. For example, Coral is a highly connected model
which cannot be easily extended to intermittently connected
devices, such as portable music or video players. The proposed
scheme runs even in off-line environments.

VI. Conclusion

In this paper, we presented an overview of some existing
approaches toward interoperability of DRM schemes. We
analyzed their characteristics, classified them, and identified
challenging issues in this area, including information loss/leak,
transparency and implementation complexity. To address these
issues, we proposed an interoperable DRM framework based
on the concepts of domain and profile. The domain concept
allows users to consume content on their devices in a more
natural, and transparent way. We also provided domain
protocols that do not require the involvement of users. The
profile concept enables interoperability through add-on
functionality. It does not require major modification of existing
protected content formats or DRM modules; therefore, the
proposed scheme can considerably reduce the possibility of
information loss or leak. Our framework also solved the
implementation issues by opening the API, which enables
rapid development of applications by developers without deep
knowledge of DRM technologies.

In the proposed system, all participating DRM schemes are
based on PKI. Under the proposed framework, it may be
possible to provide interoperability between non-PKI DRM
schemes and our S-DRM scheme in an ad hoc way. Surely it is
not a desirable direction. As a future research topic, we could
consider how to support DRM interoperability between PKI
and non-PKI based DRM schemes.

References

[1] INDICARE, “Consumer Survey on Digital Music and DRM,”
http://www.indicare.org, May 2005.

[2] OMA (Open Mobile Alliance) 2.0, http://www.openmobilealliance.org,
September 2007.

[3] MPEG-21, http://www.chiariglione.org/mpeg/standards/mpeg-21/
mpeg-21.htm.

[4] DMP (Digital Media Project), http://www.dmpf.org.
[5] Coral, “Coral Consortium Core Architecture 3.0,” http://www.

coral-interop.org, June 2006.
[6] R.H. Koenen, J. Lacy, M. Mackay, and S. Mitchell, “The Long

March to Interoperable Digital Rights Management,” Proc. the
IEEE, vol. 92, 2004, pp. 883-897.

[7] ODRL (Open Digital Rights Language), “Open Digital Rights
Language v1.1,” http://www.odrl.net.

[8] ContentGuard, eXtensible Rights Markup Language (XrML) 2.0

Specification, Nov. 2001.
[9] R. Safavi-Naini, N.P. Sheppard, and T. Uehara, “Import/Export in

Digital Rights Management,” Proc. ACM Workshop on Digital
Rights Management, 2004.

[10] P. Jamkhedkar and G. Heileman, “DRM Interoperability Analysis
from the Perspective of a Layered Framework,” Proc. ACM
Workshop on Digital Rights Management, 2005.

[11] S. Michiels, K. Verslype, W. Joosen, and B. De Decker,
“Towards a Software Architecture for DRM,” Proc. ACM
Workshop on Digital Rights Management, 2005.

[12] B. Choi, Y. Byun, J. Nam, and J. Hong, “A Tool Pack
Mechanism for DRM Interoperability,” ETRI Journal, vol. 29, no.
4, 2007, pp. 539-541.

[13] Trusted Computing Group, Trusted Computing Platform Alliance
Main Specification Version 1.1b, Feb. 2002.

[14] Xerox Corporation, The Digital Property Rights Language, 1998.
[15] S.O. Hwang and K.S. Yoon, The Mobile DRM Specifications V

1.0, Telecommunications Technology Association (TTA), Korea,
2006.

[16] MPEG LA (Licensing Authority), “DRM Reference Model 3.0,”
http://www.mpegla.com.

[17] XML-RPC, http://www.xmlrpc.com.
[18] Advanced Encryption Standard (AES), NIST FIPS 197,

http://csrc.nist.gov/encryption/aes/index.html.
[19] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems,”
Comm. ACM, vol. 21, 1978.

[20] DVB (Digital Video Broadcasting), “Part 7: CPCM Authorised
Domain Management,” in Content Protection & Copy
Management Specification, 2007.

[21] B.C. Popescu, F.L.A.J. Kamperman, B. Crispo, and A.S.
Tanenbaum, “A DRM Security Architecture for Home
Networks,” Proc. 4th ACM Workshop on Digital Rights
Management, 2004.

[22] T.S. Messerges and E.A. Dabbish, “Digital Rights Management in
a 3G Mobile Phone and Beyond,” Proc. the 3rd ACM Workshop
on Digital Rights Management, 2003.

[23] R. Housley, Cryptographic Message Syntax, IETF RFC2630,
http://www.ietf.org/rfc/rfc2630.txt, 1999.

Seong Oun Hwang received his BS degree
in mathematics in 1993 from Seoul National
University, his MS degree in computer and
communications engineering in 1998 from
Pohang University of Science and
Technology, and his PhD degree in computer
science from Korea Advanced Institute of
Science and Technology. He worked as a

software engineer at LG-CNS Systems, Inc. from 1994 to 1996. He
worked as a senior researcher at Electronics and Telecommunications

ETRI Journal, Volume 30, Number 4, August 2008 Seong Oun Hwang et al. 575

Research Institute (ETRI) from 1998 to 2007. Since 2008, he has been
working as an assistant professor with the Department of Computer
and Information Communication Engineering of Hongik University,
Korea. His research interests include cryptographic algorithms,
protocols, and applications.

Ki Song Yoon received his BS degree in
shipbuilding engineering in 1984 from Pusan
National University, Pusan, Korea. He received
his MS and PhD degrees in computer
engineering from City University of New York,
New York, USA, in 1988 and 1993,
respectively. Since 1993, he has been working

as a principal researcher with Electronics and Telecommunications
Research Institute (ETRI), Korea. His research interests include
network protocols and applications.

