Systematic Design of High-Resolution High-Frequency Cascade Continuous-Time Sigma-Delta Modulators

  • Received : 2007.08.01
  • Accepted : 2008.06.27
  • Published : 2008.08.30

Abstract

This paper introduces a systematic top-down and bottom-up design methodology to assist the designer in the implementation of continuous-time (CT) cascade sigma-delta (${\Sigma}{\Delta}$) modulators. The salient features of this methodology are (a) flexible behavioral modeling for optimum accuracy-efficiency trade-offs at different stages of the top-down synthesis process, (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity, (c) mixed knowledge-based and optimization-based architectural exploration and specification transmission for enhanced circuit performance, and (d) use of Pareto-optimal fronts of building blocks to reduce re-design iterations. The applicability of this methodology will be illustrated via the design of a 12-bit 20 MHz CT ${\Sigma}{\Delta}$ modulator in a 1.2 V 130 nm CMOS technology.

Keywords