Effect of oxygen partial pressure on the optical and structural properties of Al doped ZnO thin films prepared by RF magnetron sputtering method

RF 마그네트론 스퍼터 방법으로 제조한 Al 도핑된 ZnO 박막의 구조 및 광학적 특성에 미치는 산소 분압비의 영향

  • Shin, Seung-Wook (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, Hyeon-Soo (Department of Materials Science and Engineering, Chonnam National University) ;
  • Moon, Jong-Ha (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Tae-Won (Nanoelectronic Team, Gwangju Research Center Korea Institute of Industrial Technology) ;
  • Kim, Jin-Hyeok (Department of Materials Science and Engineering, Chonnam National University)
  • 신승욱 (전남대학교 신소재 공학부) ;
  • 박현수 (전남대학교 신소재 공학부) ;
  • 문종하 (전남대학교 신소재 공학부) ;
  • 김태원 (한국생산기술연구원 광주본부 나노전자 소자팀) ;
  • 김진혁 (전남대학교 신소재 공학부)
  • Published : 2008.04.22

Abstract

0.5 wt% Al doped ZnO thin films (AZO) were prepared on glass substrates using RF magnetron sputtering method. Thin films were grown at substrate temperature of $250^{\circ}C$, RF power of 75W, working pressure of 10 mTorr, by changing the $O_2/Ar$ pressure ratio from 0% to 16.7%. The effects of oxygen partial pressure during the deposition process on structural and optical properties of the films were investigated using XRD, SEM, AFM, EPMA and UV-visible spectroscopy. All the AZO thin films were grown as hexagonal wurtzite phase with the c-axis preferred out-of-plane orientation. The surface roughness and grain size of AZO films decreased with increasing oxygen ratio from 10.6 nm to 3.2 nm and 94.9 nm to 30.9 nm, respectively. On the other hand, the transmittance and band gap energy of the AZO films increased from 84.7% to 92.6% and 3.24 eV to 3.28 eV, respectively with increasing the $O_2/Ar$ pressure ratio.

Keywords

Acknowledgement

Supported by : 전남대학교

References

  1. J. Springer, B. Rech, W. Reetz, J. Muller, M. Vanecek, Solar Energy Materials and Solar Cells 85 ,1 (2005)
  2. K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films 102, 1 (1983) https://doi.org/10.1016/0040-6090(83)90256-0
  3. Z. C. Jin, I. Hamberg, C. G. Granqvist, Journal of Applied Physics 64, 5117 (1988) https://doi.org/10.1063/1.342419
  4. D. H. Zhang, T. L. Yang, J. Ma, Q. P. Wang, R. W. Gao, H. L. Ma, Applied Surface Science 158 ,43 (2000) https://doi.org/10.1016/S0169-4332(99)00591-7
  5. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, M. Wuttig, Journal of Applied Physics 95,1911 (2004) https://doi.org/10.1063/1.1641524
  6. T. Shiosaki, S. Ohnishi, A. Kawabata, Journal of Applied Physics 50, 3113 (1979) https://doi.org/10.1063/1.326391
  7. K. F. Cai, E. Muller, C. Drasar, A. Mrotzek, Materials Science and Engineering B 104, 45 (2003) https://doi.org/10.1016/S0921-5107(03)00280-0
  8. T. Ohgaki, Y. Kawamura, T. Kuroda, N. Ohashi, Y. Adachi, T. Tsurumi, F. Minami, H. Haneda, Electroceramics in Japan Vi 248 , 91 (2003)
  9. K. Matsubara, P. Fons, K. Iwata, A. Yamada, S. Niki, Thin Solid Films, 422 176 (2002) https://doi.org/10.1016/S0040-6090(02)00965-3
  10. T. Tsuji, M. Hirohashi, Applied Surface Science 157 ,47 (2000) https://doi.org/10.1016/S0169-4332(99)00517-6
  11. J. F. Chang, C.C. Shen, M.H. Hon, Ceramics International 29, 245 (2003) https://doi.org/10.1016/S0272-8842(02)00111-6
  12. K. Yim, Korean journal of Materials Research 15, 518 (2005). https://doi.org/10.3740/MRSK.2005.15.8.518
  13. K. H. Yoon, J.W. Choi, D.H. Lee, Thin Solid Films 302, 116 (1997) https://doi.org/10.1016/S0040-6090(96)09568-5
  14. M. K. Kang, and D. H. Kim, Korean journal of Materials Research 16, 449 (2006) https://doi.org/10.3740/MRSK.2006.16.7.449
  15. I. Sayago, M. Aleixandre, L. Ares, M. J. Fernandez, J.P. Santos, J. Gutierrez, M.C. Horrillo, Applied Surface Science 245, 273 (2005) https://doi.org/10.1016/j.apsusc.2004.10.035
  16. M. P. d. S. Li-Jian, Vacuum 46, 1001 (1995) https://doi.org/10.1016/0042-207X(95)00092-5
  17. T. K. Subramanyam, B.S. Naidu, S. Uthanna, Physica Status Solidi a-Applied Research 173, 425 (1999) https://doi.org/10.1002/(SICI)1521-396X(199906)173:2<425::AID-PSSA425>3.0.CO;2-Q
  18. S. H. B. Amrani, Catatysis Today 89, 331 (2004) https://doi.org/10.1016/j.cattod.2003.12.014
  19. D. U. Lee, and S. Nam, J. Kor. Institute of Electrical and Electronic Material Engineers 13, 617 (2000)
  20. J. Bin Lee, S. H. Kwak, H. J. Kim, Thin Solid Films 423, 262 (2003) https://doi.org/10.1016/S0040-6090(02)00977-X
  21. I. Sayago, M. Aleixandre, A. Martinez, M. Fernandez, J.P. Santos, J. Gutierrez, I. Gracia, M.C. Horrillo, Synthetic Metal 148, 37 (2005) https://doi.org/10.1016/j.synthmet.2004.09.006
  22. K. Yim, C. Lee, Crystal Research and Technology 41, 1198 (2006) https://doi.org/10.1002/crat.200610749
  23. K.H. Kim, K.C. Park, D.Y. Ma, Journal of Applied Physics 81 ,7764 (1997) https://doi.org/10.1063/1.365556