비정질 합금의 자유부피 생성기구: 분자동력학적 고찰

Free Volume Formation in Amorphous Alloys: a Molecular Dynamics Study

  • 이창면 (고려대학교 신소재공학과) ;
  • 박경원 (고려대학교 신소재공학과) ;
  • 이병주 (POSTECH 신소재공학과) ;
  • 심재혁 (한국과학기술연구원 재료기술부) ;
  • 이재훈 (한국생산기술연구원 신소재본부) ;
  • 이재철 (고려대학교 신소재공학과)
  • Lee, Chang-Myeon (Department of Materials Science and Engineering, Korea University) ;
  • Park, Kyoung-Won (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Byeong-Joo (Department of Materials Science and Engineering, POSTECH) ;
  • Shim, Jae-Hyeok (Materials Science and Technology Division, KIST) ;
  • Lee, Jae-Hoon (Advanced Materials Division, Korea Institute of Industrial Technology) ;
  • Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2008.06.15
  • 발행 : 2008.11.25

초록

This study examined the creation mechanism of free volume during homogeneous deformation induced by the elastostatic compression at room temperature. Experiments demonstrated that amorphous alloys subjected to the elastostatic compression underwent structural disordering, during which densely packed polyhedra breakdown to form new, loosely packed ones, resulting in the creation of excess free volume. A combination of experiments and molecular dynamics simulations are used to explore fundamental issues on how free volume is created during elastostatic compression.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. M. Wakeda, Y. Shibutani, S. Ogata and J. Y. Park, Intermetallics 15, 139 (2007) https://doi.org/10.1016/j.intermet.2006.04.002
  2. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 7192 (1998)
  3. M. L. Falk, Phys. Rev. B 60, 7062 (1999)
  4. C. A. Schuh, A. C. Lund and T. G. Nieh, Acta Mater. 52, 5879 (2004) https://doi.org/10.1016/j.actamat.2004.09.005
  5. A. S. Argon, Acta Metall. 27, 47 (1979) https://doi.org/10.1016/0001-6160(79)90055-5
  6. S. Ogata, F. Shimizu, J. Li, M. Wakeda and Y. Shibutani, Intermetallics 14, 1033 (2006) https://doi.org/10.1016/j.intermet.2006.01.022
  7. C. M. Lee, S. Y. Shin, N. J. Kim and J. C. Lee, J. Kor. Inst. Met. & Mater. 45, 203 (2007)
  8. M. Heggen, F. Spaepen and M. Feuerbacher, J. Appl. Phys. 97, 033506 (2005) https://doi.org/10.1063/1.1827344
  9. F. Spaepen, Acta Metall. 25, 407 (1977) https://doi.org/10.1016/0001-6160(77)90232-2
  10. S. C. Lee, C. M. Lee, J. C. Lee, H. J. Kim, Y. Shibutani, E. Fleury and M. L. Falk, Appl. Phys. Lett. 92, 151906 (2008) https://doi.org/10.1063/1.2908218
  11. D. Deng, A.S. Argon and S.Yip Phil. Trans. R. Soc. Lond. A 329, 549 (1989)
  12. D. Deng, A.S. Argon and S.Yip Phil. Trans. R. Soc. Lond. A 329, 613 (1989)
  13. Y. M. Kim and B. J. Lee, J. Materials Research 23, 1095 (2008) https://doi.org/10.1557/jmr.2008.0130
  14. K. W. Park, M. Wakeda, Y. Shibutani and J. C. Lee, J. Kor. Inst. Met. & Mater. 45, 663 (2007)
  15. A. Van den Beukel and J. Sietsma, Acta Mater. 38, 383 (1990) https://doi.org/10.1016/0956-7151(90)90142-4
  16. Y. Shi, M. B. Katz, H. Li, and Mi. L. Falk, Phys. Rev. B 75, 174443 (2007)
  17. F. M. Richards J. Mol. Biol. 82, 1 (1974) https://doi.org/10.1016/0022-2836(74)90570-1