고 Mn계 TWIP 강의 미세조직과 기계적 성질

Microstructure and Mechanical Properties of High Mn TWIP Steels

  • 정종구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 이오연 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 박영구 (전북대학교 신소재공학부 신소재개발연구센터) ;
  • 김동은 (HYSCO 기술연구소) ;
  • 진광근 (POSCO 기술연구소) ;
  • 김성규 (POSCO 기술연구소) ;
  • 송기홍 (전주비전대학 자동차학과)
  • Jung, J.K. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Lee, O.Y. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Park, Y.K. (School of Advanced Materials Eng. & RCAMD, Chonbuk Nat. Univ.) ;
  • Kim, D.E. (HYSCO Technical Research Lab.) ;
  • Jin, K.G. (POSCO Technical Research Lab.) ;
  • Kim, S.K. ;
  • Song, K.H. (Dept. of Automobile Engineering. Vison University of Chonju)
  • 투고 : 2008.07.11
  • 발행 : 2008.10.25

초록

The austenitic Fe-Mn alloys have received considerable attention as a possible candidate for the automotive structural materials due to their high strength and high formability with high elongation. This research investigates the effect of alloying elements on the phase transformation, deformation behavior and mechanical properties in high Mn steels for the development of a high strength high ductility steel. The mechanical stability of austenitic phases is very important for high ductility and it depends largely on the composition of carbon, manganese and aluminum. The dominant deformation mode shifts from TRIP to TWIP mode as the amount of C, Mn and Al is increased. Especially, even a small amount of Al addition facilitates significantly TWIP deformation due to the increase of stacking fault energy in Fe-Mn alloys, this leads to increase the ductility and also decrease the crack sensitivity.

키워드

참고문헌

  1. S. J. Kim and C. G. Lee, J. Kor. Inst. Met & Mater. 37, 774 (1999).
  2. H. H. Do, K. M. Cho, C. S. Oh, D. W. Suh and S. J. Kim, J. Kor. Inst. Met & Mater. 44. 99 (2006).
  3. K. Sipos, L. Remy and A. Pineau. Metall. Trans. 7A, 857 (1976).
  4. L. Remy and A. Pineau. Meter. Sci. Eng. 28, 99 (1977). https://doi.org/10.1016/0025-5416(77)90093-3
  5. O. Bouaziz and N. Guelton. Meter. Sci. Eng. A 319-321, 246 (2001).
  6. Emin Bayraktar, Fazal A. Khalid and Christophe Levailant. Mater. Pro. Tech. 147, 145 (2004).
  7. O. GGrssel, L. Krger, G. Frommeyer and L. W. Meyer. Int. J. Plasticity. 46, 1391 (2000).
  8. S. Ueda, S. Watahiki and H. Fujita. Jpn. Inst. Met. 39, 1160 (1975). https://doi.org/10.2320/jinstmet1952.39.11_1160
  9. A. S. Hamada, L. P. Darjalainen and M. C. Somani. Meter. Sci. Eng. A 467, 114 (2007).
  10. L. Remy. Metall. Trans. 12A, 387 (1981).
  11. A. Dumay, J. P. Chateau, S. Allain, S. Migot and O. Bouaziz. Meter. Sci. Eng. A 483-484, 184 (2008).
  12. K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue. ISIJ. Int. 29, 868 (1989). https://doi.org/10.2355/isijinternational.29.868
  13. G. G. Chin, S. G. Kim, S. G. Kim and I. Y. Sohn, Trends in Met & Mater. Eng. 19, 12 (2006)
  14. Y. Tomoda. Tetsu-to-Hagane. 77, 315 (1991). https://doi.org/10.2355/tetsutohagane1955.77.3_315
  15. S. Allain, J. P. Chateau, D. Dahmoun and O. Bouaziz. Meter. Sci. Eng. A 387-389, 272 (2004).