A Study on the Initiation of Pitting Corrosion of Fe-17Cr Alloy Using Micro-Droplet Cell Technique

Micro-droplet cell을 이용한 Fe-17Cr 합금의 공식 발생에 대한 연구

  • Kim, Jae-Jung (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Bong (School of Advanced Materials Engineering, Kookmin University)
  • 김재중 (국민대학교 신소재공학부) ;
  • 이재봉 (국민대학교 신소재공학부)
  • Received : 2008.08.14
  • Published : 2008.12.25

Abstract

The influences of various parameters such as inclusions, surface roughness, exposed areas and chloride ion concentrations on the initiation of pitting of Fe-17Cr alloy were investigated, using micro-droplet cell technique. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local currents with the potentiodynamic polarization. Micro electrochemical tests were carried out at the inclusions after EDX analysis of inclusion. EDX analysis identified inclusions as Cr-oxides. It was found that some active inclusions among Cr-oxide inclusions acted as initiation sites for pitting corrosion. In addition, the rougher surface and the denser chloride ion concentration offered easier pit initiation sites, causing the more susceptible to pitting corrosion.

Keywords

References

  1. Jae-Bong Lee, Materials Chemistry and Physics 99, 224 (2006) https://doi.org/10.1016/j.matchemphys.2005.10.016
  2. Sim-Kun Min, Jae-Bong Lee, J. Kor. Inst. Mat. & Mater. 45, 305 (2007)
  3. Y. Kobayashi, S. Virtanen, H. Bohni, J. Electrochem. Soc. 147, 155 (2000). https://doi.org/10.1149/1.1393169
  4. G. S. Frankel, J. Electrochem. Soc. 145, 2186 (1998) https://doi.org/10.1149/1.1838615
  5. T. Suter, H. Bohni, Electrochim. Acta. 42, 3275 (1997) https://doi.org/10.1016/S0013-4686(70)01783-8
  6. H. Bohni, T. Suter, F. Assi, Surf. Coat. Technol. 130, 80 (2000) https://doi.org/10.1016/S0257-8972(00)00681-2
  7. T. Suter, H. Bohni, Electrochim. Acta. 47, 191 (2001) https://doi.org/10.1016/S0013-4686(01)00551-5
  8. C. H. Paik, R. C. Alkire, J. Electrochem. Soc. 148, B276 (2001) https://doi.org/10.1149/1.1379030
  9. T. Suter, R. C. Alkire, J. Electrochem. Soc. 148, B36 (2001) https://doi.org/10.1149/1.1344530
  10. J. O. Park, T. Suter, H. Bohni, Corrosion 59, 59 (2003) https://doi.org/10.5006/1.3277537
  11. H. Y. Ha, C. J. Park, H. S. Kwon, Corros. Sci. 49, 1266 (2007) https://doi.org/10.1016/j.corsci.2006.08.017
  12. I. Muto, Y. Izumiyama, N. Hara, J. Electrochem. Soc. 154, C439 (2007) https://doi.org/10.1149/1.2745639
  13. J. O. Park, S. Matsch, H. Bohni, J. Electrochem. Soc. 149, B34 (2002) https://doi.org/10.1149/1.1430415
  14. T. Suter, Y. Muller, P. Schmutz, O. Trzebiatowski, Adv. Eng. Mater 7, 339 (2005) https://doi.org/10.1002/adem.200500067
  15. F. Eckermann, P. J. Uggowitzer, P. Schmutz, Mater. Sci. Forum. 519, 635 (2006)
  16. V. Vignal, N. Mary, R. Otlra, J. Peultier, J. Electrochem. Soc. 153, B352 (2006) https://doi.org/10.1149/1.2218762
  17. C. J. Park, M. M. Lohrengel, T. Hamelemann, M Pilaski, H. S. Kwon, Electrochim. Acta. 47, 3395 (2002) https://doi.org/10.1016/S0013-4686(02)00221-9
  18. C. J. Park, H. S. Kwon, M. M. Lohrengel, Mater. Sci. Eng(A). 372, 180 (2004) https://doi.org/10.1016/j.msea.2003.12.013
  19. R. A. Perren, T. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M. O. Speidel, Corros. Sci. 43, 707 (2001) https://doi.org/10.1016/S0010-938X(00)00087-1
  20. R. A. Perren, T. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, M. O. Speidel, Corros. Sci. 43, 727 (2001) https://doi.org/10.1016/S0010-938X(00)00088-3
  21. C. Garcia, F. Martin, P. De Tiedra, Y. Blanco, M. Lopez, Corros. Sci. 50, 1184 (2008) https://doi.org/10.1016/j.corsci.2007.11.028