International Journal of KIMICS, Vol. 6, No. 3, September 2008

289

A Design of a Mobile Graphics Accelerator
based on OpenVG 1.0 API

Jae-Chang Kwak, Kwang-Yeob Lee, Seokyeong University

Abstract—In this paper, we propose the hardware
architecture to accelerate 2D Vector graphics process for
mobile devices. we propose the Transformation Unit
Architecture that considerates the operation dependency.
It has 3 cycles excution time and uses 2 multipliers and
2 adders. Proposed paint generation unit uses a LUT
method, so it does not execute color interpolation which
needs to be calculated every time. The proposed
OpenVG 1.0 Accelerator achieved a 2.85 times faster
performance in a tiger model.

Index Terms— OpenVG 1.0, 2D vector graphics,
Graphics accelerator, Graphics pipeline.

L. INTRODUCTION

Recently, mobile devices need smooth, high-
quality 2D graphics to enable high-quality user
interfaces and ultra-readable text on small
screens[1].

Most traditional 2D graphics are in the format of
bitmap graphics that work efficiently with static
contents at a consistent resolution. However, the
storage requirement for animated bitmap graphics
grow rapidly since each frame of animation must be
stored as a separate bitmap. Also, if the same
contents are displayed with different resolutions, an
image filtering is required to blur sharp patterns
such as text when the images are minified, or to
create blocking artifacts when the images are
magnified.

Vector graphics have two advantages: The file
size tends to remain small, and the image can be
scaled to any size without any degradation of the
image quality. Since mobile devices usually do not
have hard drives, and the screen size and even
orientation varies a lot, vector graphics have
strong advantages over bitmap graphics on mobile
devices.

OpenVG is a royalty-free, cross-platform API

Manuscript received March 12, 2008; revised July 18,
2008. Jae-Chang Kwak', Kwang-Yeob Lee?,

'Dept. of Computer Science, Seokyeong University,
2Dept. of Computer Engineering, Seokyeong University
’Corresponding Author, Seo-kyeong Univ.
Jeongneung 4-dong, Seongbuk-gu, Seoul, Korea

that provides a low-level hardware acceleration
interface for vector graphic libraries such as Flash
and SVG. OpenVG is targeted primarily on
handheld devices that require portable acceleration
of high-quality vector graphics for compelling user
interfaces and text on small screen devices - while
enabling hardware acceleration to provide[2].

In this paper, we propose the hardware
architecture to accelerate 2D Vector graphics
process for mobile devices.

I1. OpenVG Pipeline

An implementation of OpenVG may have an overall
pipeline with 8 stages, as described in the OpenVG
official specification. Since the implementers are not
restricted to use the ideal pipeline mechanism, they can
use any variations and/or even their own internal
architectures. The only restriction is to provide the same
result as the specification described. The overview of the
OpenVG pipeline is represented in Figure 1.

Definition of path,
transformation, stroke and
paint

Stroked path generation

Transformation

N Clipping

Hasterization

Masking

Paint Generation

WL W L W L WL S A L

Blending

Fig. 1 OpenVG Pipeline

The first stage is a Definition of Path, Transformation,
Stroke, and Paint. The application defines the path to be
drawn, and sets any transformation, stroke, and paint
parameters or leaves them at their default settings. When

290 Jae-Chang Kwak, Kwang-Yeob Lee Jae : A Design of a Mobile Graphics Accelerator based on OpenVG 1.0 API

all parameters have been set, the application initiates
the rendering process by calling vgDrawPath or
vgDrawlmage. If the path is to be both filled and stroked,
the remainder of the pipeline is invoked twice in a serial
fashion, first to fill and then to stroke the path.

The second stage is a Stroked path Generation. If the
path is to be stroked, the stroke parameters are applied in
the user coordinate system to generate a new path that
describes the stroked geometry.

The third stage is a Transformation. The current path-
user-to-surface transformation is applied to the geometry
of the current path, producing drawing surface coordinates.
For an image, the outline of the image is transformed
using the image-user-to-surface transformation.

The fourth stage is a Rasterization. A coverage value
is computed at pixels affected by the current path using a
filtering process, and saved for use in the anti-aliasing
step.

The fifth stage is a Clipping and Scissoring. Pixels
not lying within the bounds of the drawing surface, and
(if scissoring is enabled) within the union of the current
set of scissor rectangles are not drawing. An
application-specified alpha mask image is used to
modify the coverage values generated by the previous
stage.

Next is a Paint Generation stage. At each pixel of the
drawing surface, the relevant current paint is used to
define a color and an alpha value. For gradient and pattern
paints, the paint-to-user transformation is concatenated
with the path-user-to-surface transformation to define the
paint transformation that will geometrically transform the
paint.

The seventh stage is an Image stage. If an image is
being drawn, an image color and alpha value is
computed at each pixel by interpolating image values.
The results are combined with the paint color and alpha
values according to the current image drawing mode.

The last stage is a Blending and Anti-aliasing. At
each pixel, the source color and alpha values from the
preceding stage are converted into the destination color
space and blended with the corresponding destination
color and alpha values according to the current
blending rule. The computed coverage value from stage
5 is used to interpolate between the blending and anti-
aliasing.

H1I. Proposed Pipeline

The proposed pipeline of OpenVG is shown in Fig 2.
The rasterizer stage contains clipping and scissoring
units that are processing with coverage values.

Clipping doesn't generate edge that out of screen. So,
it can reduce extra pipeline operation. Per pixel operation
stage contains the steps such as Paint Generation,
Blending, Masking, and Anti-aliasing.

Definition of Path, Transformation, Stroke and Paint

N Y
L i o e ol

/ Path Tessellation A
L Stroked Path, Fill Path B /
NS : sy Z
/ . M
; Transformation ;
S /)
(v ~ Rasterization A\
i (Rasteriéatibn, Clipping, Scissoring) \/ ‘
S SR
a Per pixel operation \
| R
k 4 Paint, Image, Blending, Masking, Anti-alising , '
W o e = T

Fig. 2 Proposed Pipeline

3.1 Proposed Pipeline : Transformation

Transformation is processed by Affine transformation
with matrix operation such as Translation, Scale, and
Rotation. Transformation process needs 4 times floating
point addition and multiplication for a coordinate change
of 1 vertex. Equation 1 shows the this operations.

NV.X =V.X e M[0][0]+7.Y o M[0][1]+ M[0][2]
NvY =V.X e M[1][0]+ V.Y e M[1][1]+ M]1][2]

* NV : Vertex coordinate after Transformation

*V :Vertex coordinate before Transformation

*M : Matrix for Affine Transformation.
Equation 1. Affine Transformation

Vertex.x Vertex.x Vertex.x Vertex.x
Vertex.y Vertex.y Vertex.y
Mul Mul Mul
Add Add Add
() () (x)
Mul Mutl Mul
Add Add Add
y)) v)
Mul Mul Mul
Add Add Add
{x) (x) (x)
Mul Mul Mul
Add Add Add
(y) v) (y)
N_Vertex.x N_Vertex.x N_Vertex.x
N_Vertex.y N_Vertex.y N_Vertex.y

Fig. 3 Transformation Unit Architecture

Although Transformation uses 4 floating point adders
and 4 floating point multiples, it requires 3 cycles
execution time for the result because of the operation
dependency.

In this paper, we propose the Transformation Unit
Architecture that considerates the operation dependency.

International Journal of KIMICS, Vol. 8, No. 3, September 2008

201

It has 3 cycles execution time and uses 2 multipliers and
2 adders.

3.2 Proposed Pipeline : Rasterization

In case of the standard scan-line algorithm, it needs to
generate Active Edge Table (AET) and to sort them in
order of X coordinate while executing the scanline
processing. Rasterizer uses the scan-line edge flag
algorithm by Ackland et al.[5] with super sampling. The
edges of the polygon are first plotted to a temporary
canvas by a complement operation. Then the polygon is
filled from left to right with a pen whose color is toggled
by reading the bits from the canvas. This is typically
done with a 1-bit per pixel offscreen bitmap. Figure 4
illustrates the filling operation with the edge-flag
algorithm.

Sorting an array with AET is complex and it brings
overhead with an additional memory operation. Proposed
rasterizer is designed without sorting arrays with AET.

il
Fig. 4 Conventional Scanline Edge Flag Algorithms

A conventional edge-flag algorithms only supports the
even-odd fill rule. If the application requires non-zero
winding, the plain edge-flag is not enough, because it
doesn’t contain a direction information of the edge. In
the even-odd fill rule, the color of a pixel is determined
by taking an infinite ray to arbitrary direction and
calculating the amount of crossings it makes with
polygon edges. If the amount is odd, the pixel is filled. If
it is even, the pixel is empty.

Fig. § Even-odd vs Non-zero fill-rule

With non-zero winding rule, the check includes a
counter for the direction of the edges. For each clockwise
edge, the value of the counter is increased and for each
counter clockwise edge, the value of the counter is
decreased. If the value of the counter is non-zero, the
pixel is filled, if it 1s zero, the pixel is empty

In order to compute the winding count for Non-Zero
fill rule, the winding count of the corresponding area
should be calculated with the information of the area that
the edge passes through. For this computation, a winding
buffer whose size is a scanline is added. The winding
buffer contains 8bits per fixel, and the value that is
accumulated with winding of edges passing through the
corresponding fixel. Fig. 5 shows the activity of the
winding buffer.

Fig. 6 Winding Buffer

The flag value is recorded at the mask buffer. The
recorded location is corresponding to the overlapping
point of the edge and the scanline with the rendering by
the extension of conventional scanline edge-flag
algorithm. The edge direction value is recorded at the
same position of winding buffer.

This method can dramatically reduce the overhead of
memory computation, because edge data are not needed
to be fetched for the calculation of the winding count of
each fixel. But additional memory spaces are needed to
store winding counts

To support Anti-Aiasing, Masking Buffer and
Winding Buffer must be added in proportion to the
number of sampling. Our proposed 2D Vector Graphics
Accelerator supports two sampling methods, four or
eight samplings per fixel. The size of Mask Buffer and
Winding Buffer should be as follows:

Mask-Buffer : Scanline size * 8bits
Winding-Buffer : Scanline size * 8bits * 8

The reason to define each bit of Mask Buffer as 8 bits
is the need to mark 8 bits per scanline in order to perform
maximum 8 samplings per scanline. Fig. 7 shows this
procedure as a unit of 4 bits

292 Jae-Chang Kwak, Kwang-Yeob Lee Jae : A Design of a Mobile Graphics Accelerator based on OpenVG 1.0 API

Mask Buffer

o 1

/
Fig. 7 Super sampling with Mask buffer

The Coverage Value of each pixel can be calculated
easily by Mask Buffer of the pixel. In the next pixel
pipeline step, additional computations for Anti-Aliasing
is not needed by using precomputed Coverage Values.
The above algorithm can be applied to Anti-Aliasing of
the Non-zero fill rule with small amendments.

3.3 Proposed Pipeline : Paint Generation

Processing of generating paint produces a gradient
paint which follows the Paint-mode.

In traditional method, to compute per pixel color of
gradient paint, it computes a gradient offset value. This
computed color of final pixel is used as interpolated two
colors.

Proposed paint generation unit uses a LUT method, so
it does not execute color interpolation which needs to be
calculated every time. LUT is generated when the input
receives a range price of color to set the first gradient
color, and the color is calculated using the generated
LUT after by a process.

IV. Verification

As a result of analysis of the operation performance
from tiger sample image, we can find that it frequently
uses floating point addition and multiplication, square
root, and division. Because it often uses a mathematics
operation in tessellation and paint steps, through them,
we need the improvement of speed with H/W realization
to realize OpenVG with floating point.

Verification is performed to measure both
functionality and performance. Functionality verification
checks whether the functionalities, suggested by
OpenVG specification, works correctly. Fig. 8 shows the
result of functional verification of Dash pattern and
Cap/Join style functions in the image rendering at Stroke
path step.

Fig. 8 Dash pattern & Cap/Join style

Fig. 9 Tiger image with Scissoring

Fig. 9 shows the result of rendering of Tiger sample
image. Scissoring function is applied to draw the image
only at the specified space. Two Scissoring rectangle
spaces are assigned, and the rendering image is displayed
at the inside of the rectangle.

Table 1 illustrates the performing time to Tessellate
path that viewed image on Fig. 10 and compared with
OpenVG reference. Table 2 presents the time to generate
paint colors for the Gradient paint-mode.

Fig. 10 Tiger & Gradient Image

International Journal of KIMICS, Vol. 6, No. 3, September 2008

293

Table 1. Image Rendering Time of Tiger & Gradient paint

Reference Proposed
Tiger 593ms 208ms
Radial
Gradient 63ms 21ms
Linear
Gradient >8ms 27ms

Fig. 11 Verification Images
{Snow, bottle, dude, flower)

Fig. 11 shows OpenVG images, used to compare
Rendering speed with the reference image. Table 2
illustrates the formance result of speed comparison.

Table 2. Image Rendering Time of Verification Images

Reference Proposed
snow 362ms 132ms
bottle 412ms 177ms
dude 386ms 156ms

Slower 397ms 188ms

V. Conclusion

In this paper , we propose new OpenVG pipeline and
algorithm which is composed of 2D vector graphics
pipeline, and configured OpenVG pipeline architecture.
For mobile environment, we uses floating point data type
which is useful in reducing the additional cost in
realization of software and hardware. The proposed new
pipeline fits for hardware realization grouped by
functions, or operations.

The project is verified with accuracy test of
movements and functions by comparing our developed
OpenVG with Tiger Sample Image offerd by Khronos
group. Through the verification program, we verified and
realized several functions.

ACKNOWLEDGMENT

This work was supported by "Nano IP/SoC
Innovative Promotion Group” and "ETRI SoC
Industry Promotion Center".

REFERENCES

[1] Kari Pulli, "New APIs for Mobile Graphics", Pr
oceedings of SPIE - The International Soci ety f
or Optical Engineering Vol. 6074, art, no. 60740
1, 2006

[2] Khronos Group Inc. "OpenVG Specification Vers
ion 1.0.1" http://www.khronos.org/openv g/, Janu
ary 2007

[3] ARM "Fixed Point Arithmetic on the ARM" , A
pplication Note 33, ARM, September 1996

[4] Kiia Killio "Scanline edge-flag algorithm for anti
aliasing” EG UK Theory and Practice of Comput
er Graphics 2007

[5] ACKLAND B. D., WESTE N.:”The edge flag al
gorithm - a fill method for raster scan displays”
IEEE Trans. Computers 30, 1 (1981), 41-48.

Jae Chang Kwak

received the B.S degree from Yonsei
University in 1983. He received the
M.S and Ph.D degrees in computer
science from the University of lowa
in 1989 and 1993, respectively.

He is currently an Professor of
Computer Science at Seokyeong
University. His main interests are Network Traffic
control, Realtime Scheduling, Embedded System,
Mobile Graphics System.

Kwang Yeob Lee

studied electronics engineering at
Sogang University and Yonsei
University from 1979 to 1987. In
1994 he received the Ph.D from the
Yonsei University. From 1989 to
1995, he was with Hyundai
Electronics as a designer of System
LSI. During that time, he was responsible for the design
of microcontroller. In 1995, he joined the Department of
Computer Engineering , Seokyeong University. His
research interests include Embedded System, Mobile 3D
Graphics Accelerator, SoC Design.

